设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x)=f(x+4),且当x∈[-2,0]时,f(x)=(12)x-1,

设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x)=f(x+4),且当x∈[-2,0]时,f(x)=(12)x-1,若在区间(-2,6]内关于x的方程f(x)-l... 设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x)=f(x+4),且当x∈[-2,0]时,f(x)=(12)x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有三个不同的实数根,则a的取值范围为______. 展开
 我来答
博学的小鲤3597
推荐于2016-06-14 · TA获得超过260个赞
知道答主
回答量:106
采纳率:100%
帮助的人:114万
展开全部
设x∈[0,2],则-x∈[-2,0],∴f(-x)=(
1
2
-x-1=2x-1,
∵f(x)是定义在R上的偶函数,∴f(x)=f(-x)=2x-1.
∵对任意x∈R,都有f(x)=f(x+4),
∴当x∈[2,4]时,(x-4)∈[-2,0],∴f(x)=f(x-4)=xx-4-1;
当x∈[4,6]时,(x-4)∈[0,2],∴f(x)=f(x-4)=2x-4-1.
∵若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有三个不同的实数根,
∴函数y=f(x)与函数y=loga(x+2)在区间(-2,6]上恰有三个交点,
通过画图可知:恰有三个交点的条件是
loga(6+2)>3
loga(2+2)<3
,解得 2
2
3
<a<2,
34
<a<2,因此所求的a的取值范围为(
34
,2).
故答案为:(
34
,2).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式