已知函数f(x)=xln(x+1)-a(x+1),其中a为常数,(1)求函数的定义域;(2)若函数f(x)在[1,+∞)
已知函数f(x)=xln(x+1)-a(x+1),其中a为常数,(1)求函数的定义域;(2)若函数f(x)在[1,+∞)上是单调递增函数,求a的取值范围;(3)若a>1,...
已知函数f(x)=xln(x+1)-a(x+1),其中a为常数,(1)求函数的定义域;(2)若函数f(x)在[1,+∞)上是单调递增函数,求a的取值范围;(3)若a>1,求g(x)=f′(x)-axx+1的单调区间.
展开
1个回答
展开全部
(1)∵x+1>0,
∴x>-1,
函数的定义域为(-1,+∞);
(2)由f'(x)=ln(1+x)+
-a>0
得a<ln(1+x)+
,
令h(x)=ln(1+x)+
,则h'(x)=
+
.
当x∈[1,+∞)时,h'(x)>0,h(x)在[1,+∞)上递增,
∴a<h(1)=
+ln2.
∴实数a的取值范围是(-∞,
+ln2).
(3)g(x)=ln(1+x)+
-a,x∈(-1,+∞),
则g'(x)=
①当a>1时,x∈(-1,a-2),g'(x)<0,g(x)是减函数,
x∈(a-2,+∞)时,g'(x)>0,g(x)是增函数.
②当a≤1时,x∈(-1,+∞),g'(x)>0,g(x)是增函数.
所以:当a>1时,减区间为(-1,a-2),增区间为(a-2,+∞);
当a≤1时,增区间为(-1,+∞).
∴x>-1,
函数的定义域为(-1,+∞);
(2)由f'(x)=ln(1+x)+
x |
1+x |
得a<ln(1+x)+
x |
1+x |
令h(x)=ln(1+x)+
x |
1+x |
1 |
1+x |
1 |
(1+x)2 |
当x∈[1,+∞)时,h'(x)>0,h(x)在[1,+∞)上递增,
∴a<h(1)=
1 |
2 |
∴实数a的取值范围是(-∞,
1 |
2 |
(3)g(x)=ln(1+x)+
(1?a)x |
1+x |
则g'(x)=
x+2?a |
(x+1)2 |
x∈(a-2,+∞)时,g'(x)>0,g(x)是增函数.
②当a≤1时,x∈(-1,+∞),g'(x)>0,g(x)是增函数.
所以:当a>1时,减区间为(-1,a-2),增区间为(a-2,+∞);
当a≤1时,增区间为(-1,+∞).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询