如图,等边△ABC中,AB=6,将一直角三角板DEF的60°角的顶点E置于边BC上移动(不与B、C重合),移动过程

如图,等边△ABC中,AB=6,将一直角三角板DEF的60°角的顶点E置于边BC上移动(不与B、C重合),移动过程中,始终满足直角边DE经过点A,斜边EF交AC于点G.(... 如图,等边△ABC中,AB=6,将一直角三角板DEF的60°角的顶点E置于边BC上移动(不与B、C重合),移动过程中,始终满足直角边DE经过点A,斜边EF交AC于点G.(1)求证:△ABE∽△ECG;(2)探究:在点E移动过程中,两三角形重叠部分能否构成等腰三角形?(3)当线段AG最短时,求重叠部分的面积. 展开
 我来答
轻雄您4752
推荐于2016-12-01 · 超过76用户采纳过TA的回答
知道答主
回答量:127
采纳率:0%
帮助的人:138万
展开全部
解答:(1)证明:∵△ABC是等边三角形,
∴∠B=∠C=∠AEG=60°,
∴∠AEB+∠CEG=180°-∠AEG=120°,∠AEB+∠BAE+=180°-∠B=120°,
∴∠BAE=∠CEG,
∵∠B=∠C,
∴△ABE∽△ECG;

(2)解:在点E移动过程中,两三角形重叠部分不能构成等腰三角形,
理由是:∵△ABC是等边三角形,
∴∠B=∠C=∠BAC=60°,
∵∠AEG=60°,∠AGE>∠C,
∴∠AGE>∠AEG,
∴AE>AG,即AE和AG不相等;
∵∠EAG<∠BAC,∠AGE>∠C,∠BAC=∠C=60°,
∴∠EAG<∠AGE,
∴AE>EG,即AE和EG不相等;
∵∠EAG<∠BAC,∠BAC=∠AEG=60°,
∴∠AEG<∠EAG,
∴AG>EG,即AG和EG不相等,
即在点E移动过程中,两三角形重叠部分不能构成等腰三角形;

(3)解:设BE=x,则CE=6-x,
∵△ABE∽△ECG,
CG
BE
=
CE
AB

CG
x
=
6?x
6

∴CG=-
1
6
x2+x=-
1
6
(x-3)2+
3
2

∴当x=3时,CG最长为
3
2
,AG最短为6-
3
2
=4.5,
又∵当BE=3时,点E为BC的中点,
∴AE⊥BC,
∴∠AEC=90°,
∵∠AEF=60°=∠C,
∴∠CEG=30°,
∴∠EGC=180°-60°-30°=90°,
∴EF⊥AC,
∴EG=CE?sin60°=
3
3
2

∴S△AEG=
1
2
×
3
3
2
×
9
2
=
27
3
8
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式