已知:如图,平面直角坐标系中,点A、B的坐标分别是A(1,4);B(3,0),以AB为直径的圆M与y轴相交于点

已知:如图,平面直角坐标系中,点A、B的坐标分别是A(1,4);B(3,0),以AB为直径的圆M与y轴相交于点C、D(点C在D的下方).(1)求直线AB的函数解析式和线段... 已知:如图,平面直角坐标系中,点A、B的坐标分别是A(1,4);B(3,0),以AB为直径的圆M与y轴相交于点C、D(点C在D的下方).(1)求直线AB的函数解析式和线段AB的长;(2)判断△ABC的形状,并说明理由;(3)若点P在以AB为直径的圆M上,且∠BAP=∠OBC,设直线AP与x轴的交点为Q,求点Q的坐标. 展开
 我来答
柔老红1H
2014-10-18 · 超过62用户采纳过TA的回答
知道答主
回答量:118
采纳率:100%
帮助的人:71.1万
展开全部
(1)设直线AB的解析式为y=kx+b(k≠0),
把A(1,4);B(3,0)代入得
k+b=4
3k+b=0

解得
k=?2
b=6

所以直线AB的解析式为y=-2x+6;
线段AB的长=
(1?3)2+(4?0)2
=2
5



(2)△ABC为等腰直角三角形.理由如下:
∵AB为⊙M的直径,
∴∠ACB=90°,
∴AC2+BC2=AB2
设C点坐标为(0,t),
∴BC2=(3-0)2+(0-t)2=9+t2,AC2=(1-0)2+(4-t)2=1+(4-t)2
而AB=2
5

∴9+t2+1+(4-t)2=20,
解得t1=1,t2=3,
∴C点坐标为(0,1),
∴BC2=9+t2=10,AC2=1+(4-t)2=10,即AC=BC,
∴△ABC为等腰直角三角形;


(3)如图,∵AB为⊙M的直径,
∴∠APB=90°,
∵∠BAP=∠OBC,
∴Rt△APB∽Rt△BOC,
PA
OB
=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式