
已知:如图,平面直角坐标系中,点A、B的坐标分别是A(1,4);B(3,0),以AB为直径的圆M与y轴相交于点
已知:如图,平面直角坐标系中,点A、B的坐标分别是A(1,4);B(3,0),以AB为直径的圆M与y轴相交于点C、D(点C在D的下方).(1)求直线AB的函数解析式和线段...
已知:如图,平面直角坐标系中,点A、B的坐标分别是A(1,4);B(3,0),以AB为直径的圆M与y轴相交于点C、D(点C在D的下方).(1)求直线AB的函数解析式和线段AB的长;(2)判断△ABC的形状,并说明理由;(3)若点P在以AB为直径的圆M上,且∠BAP=∠OBC,设直线AP与x轴的交点为Q,求点Q的坐标.
展开
1个回答
展开全部
(1)设直线AB的解析式为y=kx+b(k≠0),
把A(1,4);B(3,0)代入得
,
解得
,
所以直线AB的解析式为y=-2x+6;
线段AB的长=
=2
;
(2)△ABC为等腰直角三角形.理由如下:
∵AB为⊙M的直径,
∴∠ACB=90°,
∴AC2+BC2=AB2,
设C点坐标为(0,t),
∴BC2=(3-0)2+(0-t)2=9+t2,AC2=(1-0)2+(4-t)2=1+(4-t)2,
而AB=2
,
∴9+t2+1+(4-t)2=20,
解得t1=1,t2=3,
∴C点坐标为(0,1),
∴BC2=9+t2=10,AC2=1+(4-t)2=10,即AC=BC,
∴△ABC为等腰直角三角形;
(3)如图,∵AB为⊙M的直径,
∴∠APB=90°,
∵∠BAP=∠OBC,
∴Rt△APB∽Rt△BOC,
∴
=
把A(1,4);B(3,0)代入得
|
解得
|
所以直线AB的解析式为y=-2x+6;
线段AB的长=
(1?3)2+(4?0)2 |
5 |
(2)△ABC为等腰直角三角形.理由如下:
∵AB为⊙M的直径,
∴∠ACB=90°,
∴AC2+BC2=AB2,
设C点坐标为(0,t),
∴BC2=(3-0)2+(0-t)2=9+t2,AC2=(1-0)2+(4-t)2=1+(4-t)2,
而AB=2
5 |
∴9+t2+1+(4-t)2=20,
解得t1=1,t2=3,
∴C点坐标为(0,1),
∴BC2=9+t2=10,AC2=1+(4-t)2=10,即AC=BC,
∴△ABC为等腰直角三角形;
(3)如图,∵AB为⊙M的直径,
∴∠APB=90°,
∵∠BAP=∠OBC,
∴Rt△APB∽Rt△BOC,
∴
PA |
OB |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载