已知函数f(x)=?13x3+x2+ax+b(a,b∈R).(Ⅰ)若a=3,试确定函数f(x)的单调区间;(Ⅱ)若函数f(x)

已知函数f(x)=?13x3+x2+ax+b(a,b∈R).(Ⅰ)若a=3,试确定函数f(x)的单调区间;(Ⅱ)若函数f(x)在其图象上任意一点(x0,f(x0))处切线... 已知函数f(x)=?13x3+x2+ax+b(a,b∈R).(Ⅰ)若a=3,试确定函数f(x)的单调区间;(Ⅱ)若函数f(x)在其图象上任意一点(x0,f(x0))处切线的斜率都小于2a2,求实数a的取值范围. 展开
 我来答
糖袋该2677
推荐于2016-03-21 · TA获得超过669个赞
知道答主
回答量:151
采纳率:50%
帮助的人:74.5万
展开全部
解答:(Ⅰ)解:当a=3时,f(x)=?
1
3
x3+x2+3x+b
,所以f/(x)=-x2+2x+3,
由f'(x)>0,解得-1<x<3,由f'(x)<0,解得x<-1或x>3,
所以函数f(x)的单调增区间为(-1,3),减区间为(-∞,-1)和(3,+∞).
(Ⅱ)解:因为f'(x)=-x2+2x+a,
由题意得:f'(x)=-x2+2x+a<2a2对任意x∈R恒成立,
即-x2+2x<2a2-a对任意x∈R恒成立,
设g(x)=-x2+2x,所以g(x)=-x2+2x=-(x-1)2+1,
所以当x=1时,g(x)有最大值为1,
因为对任意x∈R,-x2+2x<2a2-a恒成立,
所以2a2-a>1,解得a>1或a<?
1
2

所以,实数a的取值范围为{a|a>1或a<?
1
2
}
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式