(2014?宝鸡一模)如图,四棱锥P-ABCD中,底面ABCD为梯形,AB∥CD,AD=CD=2AB=2,∠DAB=60°,PD⊥平面AB
(2014?宝鸡一模)如图,四棱锥P-ABCD中,底面ABCD为梯形,AB∥CD,AD=CD=2AB=2,∠DAB=60°,PD⊥平面ABCD,M为PC的中点(Ⅰ)证明:...
(2014?宝鸡一模)如图,四棱锥P-ABCD中,底面ABCD为梯形,AB∥CD,AD=CD=2AB=2,∠DAB=60°,PD⊥平面ABCD,M为PC的中点(Ⅰ)证明:BD⊥PC;(Ⅱ)若PD=12AD,求二面角D-BM-P的余弦值.
展开
展开全部
(Ⅰ)证明:由余弦定理得BD=
=
,
∴BD2+AB2=AD2,∴∠ABD=90°,BD⊥AB,
∵AB∥CD,∴BD⊥DC,
∵PD⊥底面ABCD,BD?底面ABCD,
∴BD⊥PD,
又PD∩DC=D,
∴BD⊥底面PDC,
又PC?面PDC,
∴BD⊥PC;
(Ⅱ)解:已知AB=1,AD=CD=2,PD=
,由(Ⅰ)知BD⊥底面PDC,
以D为坐标原点,DB为x轴,建立空间直角坐标系D-xyz,如图:
则D(0,0,0),B(
,0,0),P(0,0,
),M(0,1,
),
则
=(
1+4?2?1?2?
|
3 |
∴BD2+AB2=AD2,∴∠ABD=90°,BD⊥AB,
∵AB∥CD,∴BD⊥DC,
∵PD⊥底面ABCD,BD?底面ABCD,
∴BD⊥PD,
又PD∩DC=D,
∴BD⊥底面PDC,
又PC?面PDC,
∴BD⊥PC;
(Ⅱ)解:已知AB=1,AD=CD=2,PD=
3 |
以D为坐标原点,DB为x轴,建立空间直角坐标系D-xyz,如图:
则D(0,0,0),B(
3 |
2 |
| ||
2 |
则
DB |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|