已知等差数列{an}的首项a1=1,且公差d>0,其第二项、第五项、第十四项分别是等比数列{bn}的第二项、第三
已知等差数列{an}的首项a1=1,且公差d>0,其第二项、第五项、第十四项分别是等比数列{bn}的第二项、第三项、第四项.(1)求数列{an}与{bn}的通项公式;(2...
已知等差数列{an}的首项a1=1,且公差d>0,其第二项、第五项、第十四项分别是等比数列{bn}的第二项、第三项、第四项.(1)求数列{an}与{bn}的通项公式;(2)设数列{cn}满足cn=cn-1+bn(n≥2),且c1=2,求{cn}的通项公式.
展开
1个回答
展开全部
(1)∵a2=1+d,a5=1+4d,a14=1+13d
∴(1+4d)2=(1+d)(1+13d)
∵d>0
∴d=2
∴an=1+2(n-1)=2n-1
∴b2=a2=3,b3=a5=9,q=
=
=3,
∴bn=b2?qn?2=3?3n-2=3n-1
(2)∵cn=cn-1+bn(n≥2
∴cn-cn-1=bn=3n-1
∴c2-c1=3
c3?c2=32
…
cn-cn-1=3n-1
以上式子相加可得,cn?c1=3+32 +…+3n?1=
∴cn=2+
=
∴(1+4d)2=(1+d)(1+13d)
∵d>0
∴d=2
∴an=1+2(n-1)=2n-1
∴b2=a2=3,b3=a5=9,q=
b3 |
b2 |
9 |
3 |
∴bn=b2?qn?2=3?3n-2=3n-1
(2)∵cn=cn-1+bn(n≥2
∴cn-cn-1=bn=3n-1
∴c2-c1=3
c3?c2=32
…
cn-cn-1=3n-1
以上式子相加可得,cn?c1=3+32 +…+3n?1=
3(1?3n?1) |
1?3 |
∴cn=2+
3n?3 |
2 |
3n+1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询