如图,在梯形ABCD中,AD∥BC,BC=2AD,点F、G分别是边BC、CD的中点,连接AF、FG,过点D作DE∥FG交AF于点E

如图,在梯形ABCD中,AD∥BC,BC=2AD,点F、G分别是边BC、CD的中点,连接AF、FG,过点D作DE∥FG交AF于点E.(1)求证:△AED≌△CGF;(2)... 如图,在梯形ABCD中,AD∥BC,BC=2AD,点F、G分别是边BC、CD的中点,连接AF、FG,过点D作DE∥FG交AF于点E.(1)求证:△AED≌△CGF;(2)若梯形ABCD为直角梯形,∠B=90°,判断四边形DEFG是什么特殊四边形?并证明你的结论;(3)若梯形ABCD的面积为a(平方单位),则四边形DEFG的面积为13a13a(平方单位).(只写结果,不必说理) 展开
 我来答
浅春夕2481
2015-01-31 · 超过52用户采纳过TA的回答
知道答主
回答量:156
采纳率:100%
帮助的人:101万
展开全部
解答:(1)证明:∵BC=2AD,点F为BC的中点,
∴CF=AD.
又∵AD∥BC,
∴四边形AFCD是平行四边形,
∴∠DAE=∠C,AF∥DC,
∴∠AFG=∠CGF.
∵DE∥GF,
∴∠AED=∠AFG,
∴∠AED=∠CGF
∴△AED≌△CGF;

(2)解:结论:四边形DEFG是菱形.
证明如下:连接DF.
由(1)得AF∥DC,
又∵DE∥GF,
∴四边形DEFG是平行四边形.
∵AD∥BC,AD=BF=
1
2
BC,
∴四边形ABFD是平行四边形,
又∵∠B=90°,
∴四边形ABFD是矩形,
∴∠DFC=90°,
∵点G是CD的中点,
∴FG=DG=
1
2
CD,
∴四边形DEFG是菱形;

(3)四边形DEFG的面积=梯形ABCD的面积-S△ABF-2S△CFG
∵梯形ABCD的面积为a,
∴四边形DEFG的面积为
1
3
a;
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式