如图,已知等腰三角形ABC中,AB=AC,∠BAC=120º,AD⊥BC于点D,点P是BA延长线上
如图,已知等腰三角形ABC中,AB=AC,∠BAC=120º,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,求证:①∠APO+∠D...
如图,已知等腰三角形ABC中,AB=AC,∠BAC=120º,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,求证:
①∠APO+∠DCO=30º
②△OPC为等边三角形
③AC=AO+AP
④S△ABC=S四边形AOCP
(过程要完整!) 展开
①∠APO+∠DCO=30º
②△OPC为等边三角形
③AC=AO+AP
④S△ABC=S四边形AOCP
(过程要完整!) 展开
展开全部
① 连接OB
∵ △ABC中AB=AC,AD⊥BC
∴ AD是BD的垂直平分线
∴ △OBC为等腰三角形
∴ ∠DCO=∠DBO,OB=OC
∵ OC=OP
∴ OB=OP,△OBP是等腰三角形
∴ ∠ABO=∠APO
∴ ∠APO + ∠DCO = ∠ABO + ∠DBO = ∠B = 30°
②关键是要证明∠COP = 60°
∠AOP + ∠DOC = (180° - ∠PAO - ∠APO)+(180° - ∠DCO - ∠CDO)
=(180° - 120° - APO)+(180° - 90° - ∠DCO)
= 150° -(∠APO + ∠DCO)
由①得:∠APO + ∠DCO = 30°
∴ ∠AOP + ∠DOC = 120°
∴ ∠COP = 60°
又∵ OC=OP
∴ △OCP是等边三角形
③过O点作OE∥BP,交AC与E点,则
∵ △AOE中 ∠OAE = 60°,∠AOE=∠OAB=60°
∴ △AOE为等边三角形
∴ AO=AE
∵ △AOP与△EOC中,AO=EO,OP=OC,∠ECO = ∠ACD - ∠DCO = 30° - ∠DCO = ∠APO
∴ △AOP ≌ △EOC
∴ EC=AP
∴ AO+AP=AE+EC=AC
④过C点作CF⊥BP,交BP于F点,则:
Rt△ABD≌Rt△ACF,Rt△CDO≌Rt△CFP
∴S四边形AOCP = S△AOC + S△ACF + S△CFP = S△AOC + S△CDO + S△ABD = S△ABC
∵ △ABC中AB=AC,AD⊥BC
∴ AD是BD的垂直平分线
∴ △OBC为等腰三角形
∴ ∠DCO=∠DBO,OB=OC
∵ OC=OP
∴ OB=OP,△OBP是等腰三角形
∴ ∠ABO=∠APO
∴ ∠APO + ∠DCO = ∠ABO + ∠DBO = ∠B = 30°
②关键是要证明∠COP = 60°
∠AOP + ∠DOC = (180° - ∠PAO - ∠APO)+(180° - ∠DCO - ∠CDO)
=(180° - 120° - APO)+(180° - 90° - ∠DCO)
= 150° -(∠APO + ∠DCO)
由①得:∠APO + ∠DCO = 30°
∴ ∠AOP + ∠DOC = 120°
∴ ∠COP = 60°
又∵ OC=OP
∴ △OCP是等边三角形
③过O点作OE∥BP,交AC与E点,则
∵ △AOE中 ∠OAE = 60°,∠AOE=∠OAB=60°
∴ △AOE为等边三角形
∴ AO=AE
∵ △AOP与△EOC中,AO=EO,OP=OC,∠ECO = ∠ACD - ∠DCO = 30° - ∠DCO = ∠APO
∴ △AOP ≌ △EOC
∴ EC=AP
∴ AO+AP=AE+EC=AC
④过C点作CF⊥BP,交BP于F点,则:
Rt△ABD≌Rt△ACF,Rt△CDO≌Rt△CFP
∴S四边形AOCP = S△AOC + S△ACF + S△CFP = S△AOC + S△CDO + S△ABD = S△ABC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询