如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由点B向C点运

如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由点B向C点运动,同时,点Q在线段AC上由点A向C点以... 如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由点B向C点运动,同时,点Q在线段AC 上由点A向C点以4cm/s的速度运动.(1)若点P、Q两点分别从B、A 两点同时出发,经过2秒后,△BPD与△CQP是否全等,请说明理由;(2)若点P、Q两点分别从B、A 两点同时出发,△CPQ的周长为18cm,问:经过几秒后,△CPQ是等腰三角形? 展开
 我来答
苍井空Dby
2014-12-07 · 超过62用户采纳过TA的回答
知道答主
回答量:113
采纳率:0%
帮助的人:116万
展开全部
(1),△BPD与△CQP是全等.理由如下:
当P,Q两点分别从B,A两点同时出发运动2秒时
有BP=2×2=4cm,AQ=4×2=8cm
则CP=BC-BP=10-4=6cm
CQ=AC-AQ=12-8=4cm          …(2分)
∵D是AB的中点
∴BD=
1
2
AB=
1
2
×12=6cm
∴BP=CQ,BD=CP             …(3分)
又∵△ABC中,AB=AC
∴∠B=∠C                    …(4分)
在△BPD和△CQP中
BP=CQ
∠B=∠C
BD=CP
∴△BPD≌△CQP(SAS)         …(6分)

(2)设当P,Q两点同时出发运动t秒时,
有BP=2t,AQ=4t
∴t的取值范围为0<t≤3
则CP=10-2t,CQ=12-4t            …(7分)
∵△CPQ的周长为18cm,
∴PQ=18-(10-2t)-( 12-4t)=6t-4   …(8分)
要使△CPQ是等腰三角形,则可分为三种情况讨论:
①当CP=CQ时,则有10-2t=12-4t
解得:t=1     …(9分)
②当PQ=PC时,则有6t-4=10-2t
解得:t=
7
4
…(10分)
③当QP=QC时,则有6t-4=12-4t
解得:t=
8
5
…(11分)
三种情况均符合t的取值范围.
综上所述,经过1秒或
7
4
秒或
8
5
秒时,△CPQ是等腰三角形…(12分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式