如图,在△ABC中,AB=BC,⊙O是△ABC的内切圆,它与AB,BC,CA分别相切于点D、E、F. (1)求证:BE=CE
如图,在△ABC中,AB=BC,⊙O是△ABC的内切圆,它与AB,BC,CA分别相切于点D、E、F.(1)求证:BE=CE;(2)若∠A=90°,AB=AC=2,求⊙O的...
如图,在△ABC中,AB=BC,⊙O是△ABC的内切圆,它与AB,BC,CA分别相切于点D、E、F. (1)求证:BE=CE;(2)若∠A=90°,AB=AC=2,求⊙O的半径.
展开
浔子邢挚11
推荐于2017-10-11
·
TA获得超过134个赞
知道答主
回答量:173
采纳率:91%
帮助的人:79.5万
关注
(1)证明见解析;(2) . |
试题分析:(1)利用切线长定理得出AD=AF,BD=BE,CE=CF,进而得出BD=CF,即可得出答案; (2)首先连接OD、OE,进而利用切线的性质得出∠ODA=∠OFA=∠A=90°,进而得出四边形ODAF是正方形,再利用勾股定理求出⊙O的半径. 试题解析:(1)∵⊙O是△ABC的内切圆,切点为D、E、F,∴AD=AF,BD=BE,CE=CF. ∵AB=AC,∴AB-AD=AC-AF,即BD=CF. ∴BE=CE. (2)如图,连接OD、OF, ∵⊙O是△ABC的内切圆,切点为D、E、F,∴∠ODA=∠OFA=∠A=90°. 又OD=OF,∴四边形ODAF是正方形. 设OD=AD=AF=r,则BE=BD=CF=CE= . 在△ABC中,∠A=90°,∴ . 又BC=BE+CE,∴ ,解得:r= . ∴⊙O的半径是 . |
收起
为你推荐: