如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E是BC中点.(Ⅰ)求证:A1B∥平面AEC1;(Ⅱ
如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E是BC中点.(Ⅰ)求证:A1B∥平面AEC1;(Ⅱ)若棱AA1上存在一点M,满足B1M...
如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E是BC中点.(Ⅰ)求证:A1B∥平面AEC1;(Ⅱ)若棱AA1上存在一点M,满足B1M⊥C1E,求AM的长;(Ⅲ)求平面AEC1与平面ABB1A1所成锐二面角的余弦值.
展开
展开全部
(本小题满分14分)
(I)证明:连接A1C交AC1于点O,连接EO,
因为ACC1A1为正方形,所以O为A1C中点,
又E为CB中点,所以EO为△A1BC的中位线,
所以EO∥A1B,…(2分)
又∵EO?平面AEC1,A1B?平面AEC1,
所以A1B∥平面AEC1.…(4分)
(Ⅱ)解:以A为原点,AB为x轴,AC为y轴,AA1为z轴建立空间直角坐标系
所以A(0,0,0),A1(0,0,2),B(2,0,0),B1(2,0,2),C1(0,2,2),E(1,1,0),
设M(0,0,m),0≤m≤2,所以
=(?2,0,m?2),
=(1,-1,-2),
因为B1M⊥C1E,所以
?
=0,解得m=1,所以AM=1.…(8分)
(Ⅲ)解:因为
=(1,1,0),
=(0,2,2),
设平面AEC1的法向量为
=(x,y,z),
则有
(I)证明:连接A1C交AC1于点O,连接EO,
因为ACC1A1为正方形,所以O为A1C中点,
又E为CB中点,所以EO为△A1BC的中位线,
所以EO∥A1B,…(2分)
又∵EO?平面AEC1,A1B?平面AEC1,
所以A1B∥平面AEC1.…(4分)
(Ⅱ)解:以A为原点,AB为x轴,AC为y轴,AA1为z轴建立空间直角坐标系
所以A(0,0,0),A1(0,0,2),B(2,0,0),B1(2,0,2),C1(0,2,2),E(1,1,0),
设M(0,0,m),0≤m≤2,所以
B1M |
C1E |
因为B1M⊥C1E,所以
B1M |
C1E |
(Ⅲ)解:因为
AE |
AC1 |
设平面AEC1的法向量为
n |
则有
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|