设a、b、c、d都是正整数,且a^5=b^4,c^3=d^2,c-a=19,求d-b.
2个回答
展开全部
由a^5=b^4得:a=b^4/a^4=(b^2/a^2)^2;
由c^3=d^2得:c=d^2/c^2=(d/c)^2;
代入c-a=19得
(d/c)^2-(b^2/a^2)^2=19
(d/c+b^2/a^2)×(d/c-b^2/a^2)=19=19×1
很明显,前一个括号的值大于后一个括号的,所以必有
d/c+b^2/a^2=19
d/c-b^2/a^2=1
上面两式相加,整理得:d/c=10,即d=10c;
上面两式相减,整理得:b^2/a^2=9,即b^2=9a^2,解得b=3a.
因为d=10c,b=3a,a^5=b^4,c^3=d^2,所以
c^3=d^2=(10c)^2=100c^2,解得c=100,从而d=10c=1000;
由c-a=19得a=c-19=100-19=81,从而b=3a=243.
综上,d-b=1000-243=757.
由c^3=d^2得:c=d^2/c^2=(d/c)^2;
代入c-a=19得
(d/c)^2-(b^2/a^2)^2=19
(d/c+b^2/a^2)×(d/c-b^2/a^2)=19=19×1
很明显,前一个括号的值大于后一个括号的,所以必有
d/c+b^2/a^2=19
d/c-b^2/a^2=1
上面两式相加,整理得:d/c=10,即d=10c;
上面两式相减,整理得:b^2/a^2=9,即b^2=9a^2,解得b=3a.
因为d=10c,b=3a,a^5=b^4,c^3=d^2,所以
c^3=d^2=(10c)^2=100c^2,解得c=100,从而d=10c=1000;
由c-a=19得a=c-19=100-19=81,从而b=3a=243.
综上,d-b=1000-243=757.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询