展开全部
这原本是重要极限之一
lim sinx / x = 1。
x→0
在上题中,令 x = 1/n,
当 n → ∞ 时,x → 0
lim [sin(3/n)] / (1/n)
n→∞
= lim sin3x / x
x→0
= 3lim sin3x / 3x
x→0
= 3。
我们的教学法,传统的习惯是热衷于死记硬背,
重要极限会被很多教师说成是等价无穷小代换:
sin(3/n) ~ 3x; 1/n ~ x;所以,
lim [sin(3/n)] / (1/n)
n→∞
= lim sin3x / x
x→0
= 3x / x = 3。
学生乐得轻松,但是久而久之,我们的理论能力就丧失了,
以至于千千万万的理论,没有半个是我们建立、参与建立的。
再说下去,就会见光死,就会死无葬身之地。
lim sinx / x = 1。
x→0
在上题中,令 x = 1/n,
当 n → ∞ 时,x → 0
lim [sin(3/n)] / (1/n)
n→∞
= lim sin3x / x
x→0
= 3lim sin3x / 3x
x→0
= 3。
我们的教学法,传统的习惯是热衷于死记硬背,
重要极限会被很多教师说成是等价无穷小代换:
sin(3/n) ~ 3x; 1/n ~ x;所以,
lim [sin(3/n)] / (1/n)
n→∞
= lim sin3x / x
x→0
= 3x / x = 3。
学生乐得轻松,但是久而久之,我们的理论能力就丧失了,
以至于千千万万的理论,没有半个是我们建立、参与建立的。
再说下去,就会见光死,就会死无葬身之地。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询