如何用极限的方法求函数的水平渐进线和竖直渐近线

 我来答
是你找到了我
高粉答主

2019-06-26 · 说的都是干货,快来关注
知道小有建树答主
回答量:916
采纳率:100%
帮助的人:42.6万
展开全部

用极限的方法求函数的水平渐近线和竖直渐近线:

1、若limf(x)=C,x趋于无穷,则有水平渐近线y=C;

2、若limf(x)=无穷,x趋于x.,则有垂直渐近线x=x;

另外,若limf(x)/x=k不等于0,x趋于无穷,lim(f(x)-kx)=b,x趋于无穷,则有些渐近线y=kx+b。

当曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。渐近线分为垂直渐近线、水平渐近线和斜渐近线;需要注意的是:并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。

扩展资料:

注意事项:

1、一个函数不能同时有水平渐近线,垂直渐近线和斜渐近线,因为有水平渐近线和垂直渐近线的话,就不会有斜渐近线。

2、并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。当a=0时,有limf(x)=b (x趋向于无穷时),此时称y=b为函数f(x)的水平渐近线。所以,水平渐近线只是斜渐近线的一种特殊情况。解题时,可以不考虑水平渐近线,而只考虑斜渐近线和铅直渐近线。

参考资料来源:百度百科-斜渐近线

786657767zz

2021-04-14 · TA获得超过11.8万个赞
知道大有可为答主
回答量:3465
采纳率:94%
帮助的人:82.6万
展开全部
用极限的方法求函数的水平渐进线和竖直渐近线用极限的方法求函数的水平渐近线和竖直渐近线:

1、若limf(x)=C,x趋于无穷,则有水平渐近线y=C;
2、若limf(x)=无穷,x趋于x.,则有垂直渐近线x=x;
另外,若limf(x)/x=k不等于0,x趋于无穷,lim(f(x)-kx)=b,x趋于无穷,则有些渐近线y=kx+b。
当曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。渐近线分为垂直渐近线、水平渐近线和斜渐近线;需要注意的是:并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。
那么,学习方法有哪些呢?
1、预习
预习是非常重要的学习方法,通过预习,可以熟悉文章的内容与结构,在预习的过程中,可以在自己不懂的地方作上标记,这样上课的时候,就可以带着问题,让自己有针对性去听课,进而提高了学习的兴趣与效率。
2、听课做好笔记
听课是人们接收信息的重要的方式。人们在听课的过程中,可以学习到大部分的内容,因此,把握好听课,非常的重要。一定要集中精力,听教师讲解,并积极的做好笔记,同时参加课堂活动,积极回答老师提出的问题。
3、认真做作业
老师在上完课之后,都会给学生布置作业。做作业的目的是为了进一步的巩固课堂上面学到的内容。所以,一定要认真对待作业。
4、复习与总结
学习之后,一定要进行复习与总结,通过复习与总结,可以让学习到的内容,成为自己的知识,并在复习与总结中,发现新的问题,进一步加深对知识点的理解。
5、保持自信心
自信心可以给人们带来巨大的动力,只有具备自信心,才可以让每一天的学习更加的充满活力,并更好的记忆学习的内容。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
河北专接本考试
2020-11-06 · TA获得超过410个赞
知道小有建树答主
回答量:590
采纳率:100%
帮助的人:34.6万
展开全部

「河北专接本」知识点-数学-利用极限求函数水平渐近线

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
庆帅老师
高能答主

2021-04-15 · 世界很大,慢慢探索
知道大有可为答主
回答量:6.9万
采纳率:97%
帮助的人:2027万
展开全部
高等数学中,可以用极限的方法求水平渐进线和数值渐进线。
若Lim(x→∞)f(x)=C,则有水平渐近线y=C。
若Lim(x→x0)f(x)=∞,则有铅直渐近线x=x0。
若limf(x)=C,x趋于无穷,则有水平渐近线y=C;
若limf(x)=无穷,x趋于x.,则有垂直渐近线x=x;
另外,若limf(x)/x=k不等于0,x趋于无穷,lim(f(x)-kx)=b,x趋于无穷,则有些渐近线y=kx+b。
一个函数不能同时有水平渐近线,垂直渐近线和斜渐近线,因为有水平渐近线和垂直渐近线的话,就不会有斜渐近线。

数学解题方法和技巧。
中小学数学,还包括奥数,在学习方面要求方法适宜,有了好的方法和思路,可能会事半功倍!那有哪些方法可以依据呢?希望大家能惯用这些思维和方法来解题!

形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。

形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。

实物演示法

利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。

这种方法可以使数学内容形象化,数量关系具体化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。

二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。

特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。

图示法

借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。

图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。

在课堂教学当中,要多用图示的方法来解决问题。有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段。

列表法

运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法。列表法清晰明了,便于分析比较、提示规律,也有利于记忆。

它的局限性在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关。比如,正、反比例的内容,整理数据,乘法口诀,数位顺序等内容的教学大都采用“列表法”。

验证法

你的结果正确吗?不能只等教师的评判,重要的是自己心里要清楚,对自己的学习有一个清楚的评价,这是优秀学生必备的学习品质。

验证法应用范围比较广泛,是需要熟练掌握的一项基本功。应当通过实践训练及其长期体验积累,不断提高自己的验证能力和逐步养成严谨细致的好习惯。

(1)用不同的方法验证。教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算。

(2)代入检验。解方程的结果正确吗?用代入法,看等号两边是否相等。还可以把结果当条件进行逆向推算。

(3)是否符合实际。“千教万教教人求真,千学万学学做真人”陶行知先生的话要落实在教学中。比如,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有学生这样做:31÷4≈8(套)

按照“四舍五入法”保留近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去。教学中,常识性的东西予以重视。做衣服套数的近似计算要用“去尾法”。

(4)验证的动力在猜想和质疑。牛顿曾说过:“没有大胆的猜想,就做不出伟大的发现。”“猜”也是解决问题的一种重要策略。可以开拓学生的思维、激发“我要学”的愿望。为了避免瞎猜,一定学会验证。验证猜测结果是否正确,是否符合要求。如不符合要求,及时调整猜想,直到解决问题。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
多吃蔬菜呀1
2021-04-15 · TA获得超过3320个赞
知道大有可为答主
回答量:4806
采纳率:50%
帮助的人:142万
展开全部
1.
垂直渐近线(垂直于x轴)和水平渐近线(平行于x轴):你需要给y求极限(x趋近于正无穷和负无穷各求一次),有极限那么就有水平渐近线。 再看函数的定义域,如果没有间断点,那么肯定没有垂直渐近线,如果有间断点,那么你需要判断在这些间断点的左导数和右导数是否为无穷大,如果是,那么就有垂直渐近线。
2.
斜渐近线:你需要计算y/x的极限(x趋近于正无穷和负无穷各求一次),如果极限存在,那么这个极限就是斜渐近线的斜率,求出斜率k之后,你需要计算y-kx的极限(x趋近于正无穷和负无穷各求一次),这个
人活一辈子,就活一颗心,心好了,一切就都好了,心强大了,一切问题,都不是问题。

  人的心,虽然只有拳头般大小,当它强大的时候,其力量是无穷无尽的,可以战胜一切,当它脆弱的时候,特别容易受伤,容易多愁善感。

  心,是我们的根,是我们的本,我们要努力修炼自己的心,让它变得越来越强大,因为只有内心强大,方可治愈一切。

  没有强大的敌人,只有不够强大的自己

  人生,是一场自己和自己的较量,说到底,是自己与心的较量。如果你能够打开自己的内心,积极乐观的去生活,你会发现,生活并没有想象的那么糟糕。

  面对不容易的生活,我们要不断强大自己的内心,没人扶的时候,一定要靠自己站稳了,只要你站稳了,生活就无法将你撂倒。

  人活着要明白,这个世界,没有强大的敌人,只有不够强大的自己,如果你对现在的生活不满意,千万别抱怨,努力强大自己的内心,才是我们唯一的出路。

  只要你内心足够强大,人生就没有过不去的坎

  人生路上,坎坎坷坷,磕磕绊绊,如果你内心不够强大,那这些坎坎坷坷,磕磕绊绊,都会成为你人生路上,一道道过不去的坎,你会走得异常艰难。

  人生的坎,不好过,特别是心坎,最难过,过了这道坎,还有下道坎,过了这一关,还有下一关。面对这些关关坎坎,我们必须勇敢往前走,即使心里感到害怕,也要硬着头皮往前冲。

  人生没有过不去的坎,只要你勇敢,只要内心足够强大,一切都会过去的,不信,你回过头来看看,你已经跨过了多少坎坷,闯过了多少关。

  内心强大,是治愈一切的良方

  面对生活的不如意,面对情感的波折,面对工作上的糟心,你是否心烦意乱?是否焦躁不安?如果是,请一定要强大自己的内心,因为内心强大,是治愈一切的良方。

  当你的内心,变得足够强大,一切困难,皆可战胜,一切问题,皆可解决。心强则胜,心弱则败,很多时候,打败我们的,不是生活的不如意,也不是情感的波折,更不是工作上的糟心,而是我们内心的脆弱。

  真的,我从来不怕现实太残酷,就怕自己不够勇敢,我从来不怕生活太苦太难,就怕自己不够坚强。我相信,只要我们的内心,变得足够强大,人生就没有那么多鸡毛蒜皮。

  强大自己的内心,我们才能越活越好

  生活的美好,在于追求美好的生活,而美好的生活,源于一颗强大的内心,因为只有内心强大的人,才能消化掉各种不顺心,各种不如意,将阴霾驱散,让美好留在心中。

  心中有美好,生活才美好,心中有阳光,人生才芬芳。一颗阴暗的心,托不起一张灿烂的脸,一颗强大的心,可以美化生活,精彩人生,让我们越活越好。

  生活有点欺软怕硬,如果你内心很脆弱,生活就会打压你,甚至折磨你,如果你内心足够强大,生活就会奖励你,眷顾你,全世界都会对你和颜悦色。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(13)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式