![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
21题接下来怎么做?数学导数问题 15
1个回答
展开全部
【解析】
(Ⅰ)由已知条件得f′ (x)=
2x2+2x+a
x+1
,x>-1.当a≥
1
2
时,无极值点;当0<a<
1
2
时,令2x2+2x+a=0,利用导数性质求得f(x)有极小值点x2=
−1+
2−a
2
,有极大值点x1=
−1−
1−2a
2
.
(Ⅱ)ln
n2+1
n2+n
≤
1
n2
-
1
n4
等价于ln(1+
1
n2
)+
1
n4
≤ln(1+
1
n
)+
1
n2
,令x1=
1
n2
,x2=
1
n
,则0<x1≤x2≤1,由(Ⅰ)得f(x1)≤f(x2),由此能证明对任意的正整数n,不等式ln
n2+1
n2+n
≤
1
n2
-
1
n4
恒成立
【解答】
(Ⅰ)∵f(x)=aln(x+1)+x2,
∴f′ (x)=2x2+2x+ax+1,x+1>0,即x>−1.
①当a⩾12时,f′(x)⩾0,f(x)在(−1,+∞)上单调增加,无极值点;
②当0<a<12时,令2x2+2x+a=0,
得两根x1=−1−1−2a−−−−−√2,x2=−1+1−2a−−−−−√2,
∴x1,x2∈(−1,+∞),
由x∈(−1,x1)时,f′(x)>0,f(x)单调递增,
x∈(x1,x2)时,f′(x)<0,f(x)单调递减,
x∈(x2,+∞)时,f′(x)>0,f(x)单调递增。
∴f(x)有极小值点x2=−1+2−a−−−−√2,有极大值点x1=−1−1−2a−−−−−√2.
(Ⅱ)证明:lnn2+1n2+n⩽1n2−1n4等价于ln1+1n21+1n ⩽1n2−1n4,
∴ln(1+1n2)−ln(1+1n)⩽1n2−1n4,
∴ln(1+1n2)+1n4⩽ln(1+1n)+1n2,
令x1=1n2,x2=1n,则0<x1⩽x2⩽1,
由(Ⅰ)得f(x1)⩽f(x2),
即ln(1+x1)+x21⩽ln(1+x2)+x22,
∴ln(1+1n2)+1n4⩽ln(1+1n)+1n2恒成立,
∴对任意的正整数n,不等式lnn2+1n2+n⩽1n2−1n4恒成立。
(Ⅰ)由已知条件得f′ (x)=
2x2+2x+a
x+1
,x>-1.当a≥
1
2
时,无极值点;当0<a<
1
2
时,令2x2+2x+a=0,利用导数性质求得f(x)有极小值点x2=
−1+
2−a
2
,有极大值点x1=
−1−
1−2a
2
.
(Ⅱ)ln
n2+1
n2+n
≤
1
n2
-
1
n4
等价于ln(1+
1
n2
)+
1
n4
≤ln(1+
1
n
)+
1
n2
,令x1=
1
n2
,x2=
1
n
,则0<x1≤x2≤1,由(Ⅰ)得f(x1)≤f(x2),由此能证明对任意的正整数n,不等式ln
n2+1
n2+n
≤
1
n2
-
1
n4
恒成立
【解答】
(Ⅰ)∵f(x)=aln(x+1)+x2,
∴f′ (x)=2x2+2x+ax+1,x+1>0,即x>−1.
①当a⩾12时,f′(x)⩾0,f(x)在(−1,+∞)上单调增加,无极值点;
②当0<a<12时,令2x2+2x+a=0,
得两根x1=−1−1−2a−−−−−√2,x2=−1+1−2a−−−−−√2,
∴x1,x2∈(−1,+∞),
由x∈(−1,x1)时,f′(x)>0,f(x)单调递增,
x∈(x1,x2)时,f′(x)<0,f(x)单调递减,
x∈(x2,+∞)时,f′(x)>0,f(x)单调递增。
∴f(x)有极小值点x2=−1+2−a−−−−√2,有极大值点x1=−1−1−2a−−−−−√2.
(Ⅱ)证明:lnn2+1n2+n⩽1n2−1n4等价于ln1+1n21+1n ⩽1n2−1n4,
∴ln(1+1n2)−ln(1+1n)⩽1n2−1n4,
∴ln(1+1n2)+1n4⩽ln(1+1n)+1n2,
令x1=1n2,x2=1n,则0<x1⩽x2⩽1,
由(Ⅰ)得f(x1)⩽f(x2),
即ln(1+x1)+x21⩽ln(1+x2)+x22,
∴ln(1+1n2)+1n4⩽ln(1+1n)+1n2恒成立,
∴对任意的正整数n,不等式lnn2+1n2+n⩽1n2−1n4恒成立。
更多追问追答
追问
a为什么要在1/2的范围?
追答
看解析
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询