左导数和右导数怎么求啊? 20

 我来答
鲨鱼星小游戏
高粉答主

2021-05-26 · 最爱分享有趣的游戏日常!
鲨鱼星小游戏
采纳数:2708 获赞数:238343

向TA提问 私信TA
展开全部

用定义公式去做,不用求左右导数d,直接求导数:

f'(0)=lim(x→0)[f(x)-f(0)]/(x-0)

=lim(x→0)[xsin(1/x)-0]/x

=lim(x→0)sin(1/x)

而sin(1/x)在x→0的过程中,在±1之间无限震荡,没有极限

所以f(x)在x=0点不可导。

导数是函数的局部性质。

一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

帐号已注销
2020-11-21 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:162万
展开全部

用定义公式去做,不用求左右导数d,直接求导数

f'(0)=lim(x→0)[f(x)-f(0)]/(x-0)

=lim(x→0)[xsin(1/x)-0]/x

=lim(x→0)sin(1/x)

而sin(1/x)在x→0的过程中,在±1之间无限震荡,没有极限

所以f(x)在x=0点不可导。

扩展资料:

如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。

函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

参考资料来源:百度百科-导数

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2016-03-17
展开全部
用定义公式去做,不用求左右导数,直接求导数
f'(0)=lim(x→0)[f(x)-f(0)]/(x-0)
=lim(x→0)[xsin(1/x)-0]/x
=lim(x→0)sin(1/x)
而sin(1/x)在x→0的过程中,在±1之间无限震荡,没有极限
所以f(x)在x=0点不可导。
追问
x~0时,极限为0啊
追答
对啊,极限值等于函数值,所以g(x)在x=0点连续啊,我又没说它不连续。但是连续不一定可导啊。现在是说它不可导。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
dddTuhaigang
推荐于2017-07-13 · TA获得超过5211个赞
知道大有可为答主
回答量:2637
采纳率:55%
帮助的人:348万
展开全部
用导数的定义
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式