线性代数中,向量空间的维数和解空间维数有什么区别
线性代数中,向量空间的维数和解空间维数没有区别。解空间也是向量空间,是针对线性方程组而言的解空间,维数就是基础解系中线性无关的向量数。
而向量的维数指的向量分量的个数。用大白话来讲就是描述一个向量需要用到好几个元素,有几个元素这个向量就有几维。比如最直观的三维向量,分别用x、y、z描述,所以这个向量就是三维的。
向量空间是由好多个向量组成的空间。空间至少由v1,v2两个向量组成的二维空间。其实这个空间是可以由无数个向量表示的,但是绝对不能少于两个,这个“能描述空间的最小向来个数”就是向量空间的维数,同时也是这个向量空间的秩数。
扩展资料:
向量空间的性质:
1.在V中定义了一种运算,称为加法,即对V中任意两个元素α与β都按某一法则对应于V内惟一确定的一个元素α+β,称为α与β的和。
2.在P与V的元素间定义了一种运算,称为纯量乘法(亦称数量乘法),即对V中任意元素α和P中任意元素k,都按某一法则对应V内惟一确定的一个元素kα,称为k与α的积。
3.加法与纯量乘法满足以下条件:
1) α+β=β+α,对任意α,β∈V.
2) α+(β+γ)=(α+β)+γ,对任意α,β,γ∈V.
3) 存在一个元素0∈V,对一切α∈V有α+0=α,元素0称为V的零元.
4) 对任一α∈V,都存在β∈V使α+β=0,β称为α的负元素,记为-α.
5) 对P中单位元1,有1α=α(α∈V).
6) 对任意k,l∈P,α∈V有(kl)α=k(lα).
7) 对任意k,l∈P,α∈V有(k+l)α=kα+lα.
8) 对任意k∈P,α,β∈V有k(α+β)=kα+kβ,
则称V为域P上的一个线性空间,或向量空间。V中元素称为向量,V的零元称为零向量,P称为线性空间的基域.当P是实数域时,V称为实线性空间.当P是复数域时,V称为复线性空间。例如,若V为三维几何空间中全体向量(有向线段)构成的集合,P为实数域R。
则V关于向量加法(即平行四边形法则)和数与向量的乘法构成实数域R上的线性空间。又如,若V为数域P上全体m×n矩阵组成的集合Mmn(P),V的加法与纯量乘法分别为矩阵的加法和数与矩阵的乘法,则Mmn(P)是数域P上的线性空间。V中向量就是m×n矩阵。
再如,域P上所有n元向量(a1,a2,…,an)构成的集合P对于加法:(a1,a2,…,an)+(b1,b2,…,bn)=(a1+b1,a2+b2,…,an+bn)与纯量乘法:λ(a1,a2,…,an)=(λa1,λa2,…,λan)构成域P上的线性空间,称为域P上n元向量空间。
参考资料来源:百度百科-解空间
参考资料来源:百度百科- 线性代数(数学分支学科)
维数就是基础解系中线性无关的向量数。
一般地,矩阵的秩+解空间维数 = 方程组未知数的个数
空间维数的定义是,该空间一组坐标基向量中向量的个数。