1+1有什么意思

1+1有什么意思... 1+1有什么意思 展开
 我来答
鲸娱文化
2019-03-08 · TA获得超过261万个赞
知道大有可为答主
回答量:13.3万
采纳率:92%
帮助的人:8780万
展开全部

最近”盘“字很流行,盘是什么意思?为什么能成为网络热词?

可爱的小Prince
2016-03-27 · TA获得超过7121个赞
知道小有建树答主
回答量:1069
采纳率:83%
帮助的人:257万
展开全部
1+1=2 在现代的精密科学中,特别在数学和数理逻辑中,广泛地运用着公理法。公理法是从某一科学的许多原理中,分出一部分最基本的概念和命题,对这些基本概念不下
定义,而这一学科的所有其它概念都必须直接或间接由它们下定义;对这些基本命题(也叫公理)也不给予论证,而这一学科中的所有其它命题却必须直接或间接由它们中推出。
这样构成的理论体系就叫公理体系,构成这种公理体系的方法就叫公理法。

1+1=2 就是数学当中的公理,在数学中是不需要证明的。又因为1+1=2是一切数学定理的基础,所以它也是无法用数学的方法证明的。 至于“1+1为什么等于2?
”作为一个问题,没要求大家必须用数学的方法证明,其实只要说明为什么1+1=2就可以了,可以说这是定义,也可以说这是公理。不过用反证法还是可以证明的:假设1+
1不等于2,则数学就是一锅粥,凡是用到数学的地方都是一锅粥,人类社会就乱了套了,所以1+1必须等于2。1+1=2看似简单,却对于人类认识世界有非同寻常的意义
。 人类认识世界的过程就像一个小孩滚雪球的过程:第一步,小孩先要用双手捧一捧雪,这一捧雪就相当于人类对世界的感性认识。第二步,小孩把手里的雪捏紧,成为一个小
雪球,这个小雪球就相当于人类对感性认识进行加工,形成了概念。于是就有了1。第三步,小孩把雪球放在地上,发现雪球可以粘地上的雪,这就相当于人类的理性认识。雪可
以粘雪,相当于1+1=2。第四步,小孩把粘了雪的雪球在雪地上滚一下,发现雪球粘雪后越来越大,这就相当于人类认识世界的高级阶段,可以进入良性循环了。相当于2+
1=3。1,2,3可以排成一个最简单的数列,但是可以演绎至无穷。 有了1只是有了概念,有了1+1=2才有了数学,有了2+1=3才开始了数学的无穷变化。
物理学与1+1=2的关系 人类认识世界的过程是一个由感性到理性,有已知到未知的过程。

在数学当中已知1、2、3,则可以至于无穷,什么是物理学当中的1、2、3呢?通常它们代表着:质量、长度、时间等基本物理概念相当于1,它们是组成物理学宏伟大厦的
砖和瓦;牛顿运动定律相当于2,它使我们有了真正的物理学和科学的物理分析方法;力学的相对性原理相当于3,使牛顿运动定律可以广泛应用。在经典物理学中一切都是确定
无疑的,有了已知条件,我们就可以推出未知。当年徐迟的一篇报告文学,中国人知道了陈景润和歌德巴赫猜想。

那么,什么是歌德巴赫猜想呢? 哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在
教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫写信给当时的大数学家
欧拉,提出了以下的猜想: (a)任何一个>=6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。 这就是着名的
哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起
了许多数学家的注意。从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3,
8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18
= 5 + 13, ……等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚待数学家的努力。
从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的"明珠"。
人们对哥德巴赫猜想难题的热情,历经两百多年而不衰。世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解。 到了20世纪20年代,才有人开始向它
靠近。1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十
9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了哥德巴赫猜想。
目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”

通常都简称这个结果为大偶数可表示为 “1 + 2”的形式。 在陈景润之前,关於偶数可表示为 s个质数的乘积与t个质数的乘积之和(简称“s +
t”问题)之进展情况如下: 1920年,挪威的布朗证明了‘“9 + 9”。 1924年,德国的拉特马赫证明了“7 + 7”。
1932年,英国的埃斯特曼证明了“6 + 6”。 1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 +
366”。 1938年,苏联的布赫夕太勃证明了“5 + 5”。 1940年,苏联的布赫夕太勃证明了“4 + 4”。 1948年,匈牙利的瑞尼证明了“1 +
c”,其中c是一很大的自然数。 1956年,中国的王元证明了“3 + 4”。 1957年,中国的王元先后证明了 “3 + 3”和“2 + 3”。
1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。 1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及
意大利的朋比利证明了“1 + 3 ”。 1966年,中国的陈景润证明了 “1 + 2 ”。
从1920年布朗证明"9+9"到1966年陈景润攻下“1+2”,历经46年。

自"陈氏定理"诞生至今的30多年里,人们对哥德巴赫猜想猜想的进一步研究,均劳而无功。
布朗筛法的思路是这样的:即任一偶数(自然数)可以写为2n,这里n是一个自然数,2n可以表示为n个不同形式的一对自然数之和:
2n=1+(2n-1)=2+(2n-2)=3+(2n-3)=…=n+n 在筛去不适合哥德巴赫猜想结论的所有那些自然数对之后(例如1和2n-1;2i和(2n-
2i),i=1,2,…;3j和(2n-3j),j= 2,3,…;等等),如果能够证明至少还有一对自然数未被筛去,例如记其中的一对为p1和p2,那么p1和p2
都是素数,即得n=p1+p2,这样哥德巴赫猜想就被证明了。前一部分的叙述是很自然的想法。关键就是要证明'至少还有一对自然数未被筛去'。目前世界上谁都未能对这
一部分加以证明。要能证明,这个猜想也就解决了。 1+1=?不就是等于二吗?是的,的确是这样。但是这个二却不可小觊。2可以分解成1+1、0.1+1.9、0.5
+1.5……1里面的成分是:0.5+0.5、0.1+0.9、0.56+0.44…换个角度1+1虽然等于二但是却有许多含义。譬如说1+1=2分解后就是:0.5
+0.5+1=2
其中0.5+0.5=天生+后天培养;1=汗水。这是十分容易理解的一个公式。当然要是换个角度,聪明的人就知道凡事无绝对。答案不可能只有1个,含义亦是如此。

1+1从脑筋急转来说也可以等于一个数字“王”、田、甲。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帜籽酚繁
2016-12-23 · TA获得超过549个赞
知道小有建树答主
回答量:587
采纳率:50%
帮助的人:109万
展开全部
1、手中拿一件东西向胳膊底下一加手中就没有了。1+1=02、两个人结婚组成一个新家庭。1+1=13、儿童计算数学。1+1=24、两个人结婚,生出一个爱情的结晶变成三口之家。1+1=35、1+1等于不三不四。6、1+1等于11。7、1+1等于王8、1+1等于田9、哥德巴赫猜想;1+1等于数学皇冠明珠,10、在二进制时。1+1=10,11、布尔代数时。1+1=1,12、一只猫加一只老鼠等于美餐。这是一道现在还没有解决的题。数学中等于二。化学中小于二。生活中大于二!看起来是一个简单的问题、真正要想知道为什么可能连小孩都会笑话你,大数学家陈景运也只研究1+2为什么等于3。1+1为什么等于2不是一个简单的问题,1+2=3:数学界称为数学皇冠。1+1=2:数学界称为数学皇冠明珠。有待我们去开发。也就是,在数学领域上,哥德巴赫提出一个偶数=质数+质数的猜想,即简单表述为1+1=2然后现在大数学家陈景运,把这个猜想推到了偶数=质数+质数*质数,距离哥德巴赫猜想还差一点。所以说,1+1是等于多少,不知道……下面属于复制粘贴:1+1=2和俩点之间直线最短,分别是数学代数和数学几何的基石。整座数学大厦都是建立在这样俩条看似简单但是却牢不可破的公理之上的。另外我认为你问的1+1应该是指哥德巴赫猜想吧?这个至今没有被证明,但是陈景润在上世纪证明了1+2=3。1966年,中国的陈景润证明了“1+2”[用通俗的话说,就是大偶数=素数+素数*素数或大偶数=素数+素数(注:组成大偶数的素数不可能是偶素数,只能是奇素数。因为在素数中只有一个偶素数,那就是2。)]。其中“s+t”问题是指:s个质数的乘积与t个质数的乘积之和哥德巴赫猜想中的‘1+1’是指一个素数与一个素数的和。哥德巴赫猜想貌似简单,要证明它却着实不易,成为数学中一个著名的难题。18、19世纪,所有的数论专家对这个猜想的证明都没有作出实质性的推进,直到20世纪才有所突破。直接证明哥德巴赫猜想不行,人们采取了“迂回战术”,就是先考虑把偶数表为两数之和,而每一个数又是若干素数之积。如果把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b",那么哥氏猜想就是要证明"1+1"成立。1920年,挪威的布朗(Brun)证明了“9+9”。1924年,德国的拉特马赫(Rademacher)证明了“7+7”。1932年,英国的埃斯特曼(Estermann)证明了“6+6”。1937年,意大利的蕾西(Ricei)先后证明了“5+7”,“4+9”,“3+15”和“2+366”。1938年,苏联的布赫夕太勃(Byxwrao)证明了“5+5”。1940年,苏联的布赫夕太勃(Byxwrao)证明了“4+4”。1948年,匈牙利的瑞尼(Renyi)证明了“1+c”,其中c是一很大的自然数。1956年,中国的王元证明了“3+4”。1957年,中国的王元先后证明了“3+3”和“2+3”。1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了“1+5”,中国的王元证明了“1+4”。1965年,苏联的布赫夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及意大利的朋比利(Bombieri)证明了“1+3”。1966年,中国的陈景润证明了“1+2”[用通俗的话说,就是大偶数=素数+素数*素数或大偶数=素数+素数(注:组成大偶数的素数不可能是偶素数,只能是奇素数。因为在素数中只有一个偶素数,那就是2。)]。其中“s+t”问题是指:s个质数的乘积与t个质数的乘积之和20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。请采纳答案,支持我一下。打字不易,如满意,望采纳。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
秒懂百科
2021-01-12 · TA获得超过5.9万个赞
知道大有可为答主
回答量:25.3万
采纳率:88%
帮助的人:1.2亿
展开全部

1+1:哥德巴赫猜想

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友f84f96e
2019-12-04
知道答主
回答量:1
采纳率:0%
帮助的人:662
展开全部
我们是最美的风景名胜古迹众多。在你身边的人很多。在你身边的人很多。在你身边的人很多。在?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式