2个回答
展开全部
设h(x)=f(x)+g(x)
假设h(x)在x=x0点连续
根据连续的定义,有lim(x→x0)h(x)=h(x0)
那么lim(x→x0)g(x)=lim(x→x0)[h(x)-f(x)]
=lim(x→x0)h(x)-lim(x→x0)(f(x)
=h(x0)-f(x0)
=g(x0)
所以g(x)在x=x0点处也连续,这个题目规定的g(x)在x=x0点处不连续矛盾。
所以h(x)=f(x)+g(x)在x=x0点处不连续。
假设h(x)在x=x0点连续
根据连续的定义,有lim(x→x0)h(x)=h(x0)
那么lim(x→x0)g(x)=lim(x→x0)[h(x)-f(x)]
=lim(x→x0)h(x)-lim(x→x0)(f(x)
=h(x0)-f(x0)
=g(x0)
所以g(x)在x=x0点处也连续,这个题目规定的g(x)在x=x0点处不连续矛盾。
所以h(x)=f(x)+g(x)在x=x0点处不连续。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询