高等数学 11(3求具体过程)
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)+提问者悬赏10(财富值+成长值)
1个回答
展开全部
(3) R= lim<n→∞>(n+1)(2n+1)/[n(2n-1)] = 1
x = ±1 时级数收敛, 故收敛域 x ∈[-1, 1].
S(x)= ∑<n=1,∞>(-1)^(n-1)[2/(2n-1)-1/n]x^(2n+1)
= 2∑<n=1,∞>(-1)^(n-1)x^(2n+1) /(2n-1)
- ∑<n=1,∞>(-1)^(n-1)x^(2n+1)/n
= 2x^2∑<n=1,∞>(-1)^(n-1)x^(2n-1) /(2n-1)
- x∑<n=1,∞>(-1)^(n-1)x^(2n)/n
= 2x^2S1(x) - xS2(x)
[S1(x)]' = ∑<n=1,∞>(-1)^(n-1)x^(2n-2) = 1/(1+x^2), x ∈[-1, 1].
[S2(x)]' = 2∑<n=1,∞>(-1)^(n-1)x^(2n-1) = 2x/(1+x^2), x ∈[-1, 1].
S1(x) = ∫<0,x>[S1(t)]'dt + S1(0) = arctanx , x ∈[-1, 1].
S2(x) = ∫<0,x>[S2(t)]'dt + S1(0) = ln(1+x^2) , x ∈[-1, 1].
S(x) = 2x^2arctanx - xln(1+x^2) , x ∈[-1, 1].
x = ±1 时级数收敛, 故收敛域 x ∈[-1, 1].
S(x)= ∑<n=1,∞>(-1)^(n-1)[2/(2n-1)-1/n]x^(2n+1)
= 2∑<n=1,∞>(-1)^(n-1)x^(2n+1) /(2n-1)
- ∑<n=1,∞>(-1)^(n-1)x^(2n+1)/n
= 2x^2∑<n=1,∞>(-1)^(n-1)x^(2n-1) /(2n-1)
- x∑<n=1,∞>(-1)^(n-1)x^(2n)/n
= 2x^2S1(x) - xS2(x)
[S1(x)]' = ∑<n=1,∞>(-1)^(n-1)x^(2n-2) = 1/(1+x^2), x ∈[-1, 1].
[S2(x)]' = 2∑<n=1,∞>(-1)^(n-1)x^(2n-1) = 2x/(1+x^2), x ∈[-1, 1].
S1(x) = ∫<0,x>[S1(t)]'dt + S1(0) = arctanx , x ∈[-1, 1].
S2(x) = ∫<0,x>[S2(t)]'dt + S1(0) = ln(1+x^2) , x ∈[-1, 1].
S(x) = 2x^2arctanx - xln(1+x^2) , x ∈[-1, 1].
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询