请教一道化简题
展开全部
1/(x+1)-[(x+3)/(x²-1)]*[(x²-2x+1)/(x²+4x+3)]
=1/(x+1)-{(x+3)/[(x+1)(x-1)]}*{(x-1)²/[(x+1)(x+3)]}
=1/(x+1)-{1/[(x+1)(x-1)]}*{(x-1)²/(x+1)}
=1/(x+1)-{1/(x+1)}*{(x-1)/(x+1)}
=1/(x+1)-(x-1)/(x+1)²
=(x+1)/(x+1)²-(x-1)/(x+1)²
=[(x+1)-(x-1)]/(x+1)²
=(x+1-x+)]/(x+1)²
=2/(x+1)²
=1/(x+1)-{(x+3)/[(x+1)(x-1)]}*{(x-1)²/[(x+1)(x+3)]}
=1/(x+1)-{1/[(x+1)(x-1)]}*{(x-1)²/(x+1)}
=1/(x+1)-{1/(x+1)}*{(x-1)/(x+1)}
=1/(x+1)-(x-1)/(x+1)²
=(x+1)/(x+1)²-(x-1)/(x+1)²
=[(x+1)-(x-1)]/(x+1)²
=(x+1-x+)]/(x+1)²
=2/(x+1)²
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解原式=(1/x+1)-(x+3)/(x+1)(x-1)*[(x-1)^2/(x+3)(x+1)]
=(1/x+1)-[(x-1)/(x+1)^2]
=(x+1-x+1)/(x+1)^2
=2/(x+1)^2
=(1/x+1)-[(x-1)/(x+1)^2]
=(x+1-x+1)/(x+1)^2
=2/(x+1)^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
原式=(1/x+1)-(x+3/(x+1)(x-1))*((x-1)^2/((x+1)*(x+3)))
=(1/x+1)-(x-1)/(x+1)^2
=2/(x+1)^2
=(1/x+1)-(x-1)/(x+1)^2
=2/(x+1)^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询