matlab怎么做线性规划模型
2个回答
推荐于2017-12-16
展开全部
§1线性规划模型;一、线性规划课题:;实例1:生产计划问题;假设某厂计划生产甲、乙两种产品,现库存主要材料有;建立数学模型:;设x1、x2分别为生产甲、乙产品的件数;maxf=70x1+120x2;s.t9x1+4x2≤3600;4x1+5x2≤2000;3x1+10x2≤3000;x1,x2≥0;归结出规划问题:目标函数和约束条件都是变量x的线;形如:(1
§1 线性规划模型
一、线性规划课题:
实例1:生产计划问题
假设某厂计划生产甲、乙两种产品,现库存主要材料有A类3600公斤,B类2000公斤,C类3000公斤。每件甲产品需用材料A类9公斤,B类4公斤,C类3公斤。每件乙产品,需用材料A类4公斤,B类5公斤,C类10公斤。甲单位产品的利润70元,乙单位产品的利润120元。问如何安排生产,才能使该厂所获的利润最大。
建立数学模型:
设x1、x2分别为生产甲、乙产品的件数。f为该厂所获总润。
max f=70x1+120x2
s.t 9x1+4x2≤3600
4x1+5x2≤2000
3x1+10x2≤3000
x1,x2≥0
归结出规划问题:目标函数和约束条件都是变量x的线性函数。
形如: (1) min f T X
s.t A X≤b
Aeq X =beq
lb≤X≤ub
其中X为n维未知向量,f T=[f1,f2,…fn]为目标函数系数向量,小于等于约束系数矩阵A为m×n矩阵,b为其右端m维列向量,Aeq为等式约束系数矩阵,beq为等式约束右端常数列向量。lb,ub为自变量取值上界与下界约束的n维常数向量。
二.线性规划问题求最优解函数:
调用格式: x=linprog(f,A,b)
x=linprog(f,A,b,Aeq,beq)
x=linprog(f,A,b,Aeq,beq,lb,ub)
x=linprog(f,A,b,Aeq,beq,lb,ub,x0)
x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options)
[x,fval]=linprog(…)
[x, fval, exitflag]=linprog(…)
[x, fval, exitflag, output]=linprog(…)
[x, fval, exitflag, output, lambda]=linprog(…)
说明:x=linprog(f,A,b)返回值x为最优解向量。
§1 线性规划模型
一、线性规划课题:
实例1:生产计划问题
假设某厂计划生产甲、乙两种产品,现库存主要材料有A类3600公斤,B类2000公斤,C类3000公斤。每件甲产品需用材料A类9公斤,B类4公斤,C类3公斤。每件乙产品,需用材料A类4公斤,B类5公斤,C类10公斤。甲单位产品的利润70元,乙单位产品的利润120元。问如何安排生产,才能使该厂所获的利润最大。
建立数学模型:
设x1、x2分别为生产甲、乙产品的件数。f为该厂所获总润。
max f=70x1+120x2
s.t 9x1+4x2≤3600
4x1+5x2≤2000
3x1+10x2≤3000
x1,x2≥0
归结出规划问题:目标函数和约束条件都是变量x的线性函数。
形如: (1) min f T X
s.t A X≤b
Aeq X =beq
lb≤X≤ub
其中X为n维未知向量,f T=[f1,f2,…fn]为目标函数系数向量,小于等于约束系数矩阵A为m×n矩阵,b为其右端m维列向量,Aeq为等式约束系数矩阵,beq为等式约束右端常数列向量。lb,ub为自变量取值上界与下界约束的n维常数向量。
二.线性规划问题求最优解函数:
调用格式: x=linprog(f,A,b)
x=linprog(f,A,b,Aeq,beq)
x=linprog(f,A,b,Aeq,beq,lb,ub)
x=linprog(f,A,b,Aeq,beq,lb,ub,x0)
x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options)
[x,fval]=linprog(…)
[x, fval, exitflag]=linprog(…)
[x, fval, exitflag, output]=linprog(…)
[x, fval, exitflag, output, lambda]=linprog(…)
说明:x=linprog(f,A,b)返回值x为最优解向量。
Sievers分析仪
2024-12-30 广告
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询