隐函数x^y+y^x=1求导,怎么求啊
1个回答
展开全部
设f(x)=x^y
==> lnf(x)=ylnx
==> [1/f(x)]*f'(x)=y'*lnx+(y/x)
==> f'(x)=[y'*lnx+(y/x)]*x^y
设g(x)=y^x
==> lng(x)=xlny
==> [1/g(x)]*g'(x)=lny+(x/y)*y'
==> g'(x)=[lny+(x/y)*y']*(y^x)
所以,原式==> f'(x)+g'(x)=0
即:[y'*lnx+(y/x)]*x^y+[lny+(x/y)*y']*(y^x)=0
==> lnf(x)=ylnx
==> [1/f(x)]*f'(x)=y'*lnx+(y/x)
==> f'(x)=[y'*lnx+(y/x)]*x^y
设g(x)=y^x
==> lng(x)=xlny
==> [1/g(x)]*g'(x)=lny+(x/y)*y'
==> g'(x)=[lny+(x/y)*y']*(y^x)
所以,原式==> f'(x)+g'(x)=0
即:[y'*lnx+(y/x)]*x^y+[lny+(x/y)*y']*(y^x)=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询