高等数学求极限第16题
1个回答
展开全部
16.
1/(1+2+...+n)=1/[n(n+1)/2]=2/[n(n+1)]=2[1/n -1/(n+1)]
1+ 1/(1+2) +1/(1+2+3)+...+1/(1+2+...+n)
=2[1/1 -1/2 +1/2 -1/3 +1/3 -1/4+...+1/n -1/(n+1)]
=2[1- 1/(n+1)]
=2n/(n+1)
lim [1+ 1/(1+2) +1/(1+2+3)+...+1/(1+2+...+n)]
n→∞
=lim 2n/(n+1)
n→∞
=lim 2/(1 +1/n)
n→∞
=2/(1+0)
=2
1/(1+2+...+n)=1/[n(n+1)/2]=2/[n(n+1)]=2[1/n -1/(n+1)]
1+ 1/(1+2) +1/(1+2+3)+...+1/(1+2+...+n)
=2[1/1 -1/2 +1/2 -1/3 +1/3 -1/4+...+1/n -1/(n+1)]
=2[1- 1/(n+1)]
=2n/(n+1)
lim [1+ 1/(1+2) +1/(1+2+3)+...+1/(1+2+...+n)]
n→∞
=lim 2n/(n+1)
n→∞
=lim 2/(1 +1/n)
n→∞
=2/(1+0)
=2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询