求解一道高数题,第三小题,谢谢
1个回答
2016-11-28 · 知道合伙人教育行家
关注
展开全部
设x=1/t,则dx=-1/t²·dt
x=2时,t=1/2
x→+∞时,t→0
所以,
原式=∫(1/2~0)t²/√(1-t²)·(-1/t²)·dt
=∫(1/2~0)-1/√(1-t²)·dt
=∫(0~1/2)1/√(1-t²)·dt
=arcsint |(0~1/2)
=π/6-0
=π/6
x=2时,t=1/2
x→+∞时,t→0
所以,
原式=∫(1/2~0)t²/√(1-t²)·(-1/t²)·dt
=∫(1/2~0)-1/√(1-t²)·dt
=∫(0~1/2)1/√(1-t²)·dt
=arcsint |(0~1/2)
=π/6-0
=π/6
追答
本题也可以应用三角换元,
设x=sect,则
dx=sect·tant·dt
x=2时,t=π/3
x→+∞时,t→π/2
所以,
原式=∫(π/3~π/2)1/(sect·tant)·sect·tant·dt
=∫(π/3~π/2)1dt
=t |(π/3~π/2)
=π/2-π/3
=π/6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询