limx趋近于1(1/1-x -3/1-x³)
1个回答
展开全部
解:
lim [1/(1-x) -3/(1-x³)]
x→1
=lim [(1+x+x²)/(1-x)(1+x+x²) -3/(1-x)(1+x+x²)]
x→1
=lim [(1+x+x²-3)/(1-x)(1+x+x²)]
x→1
=lim (x²+x-2)/[(1-x)(1+x+x²)]
x→1
=lim (x-1)(x+2)/[(1-x)(1+x+x²)]
x→1
=lim -(x+2)/(1+x+x²)
x→1
=-(1+2)/(1+1+1²)
=-3/3
=-1
lim [1/(1-x) -3/(1-x³)]
x→1
=lim [(1+x+x²)/(1-x)(1+x+x²) -3/(1-x)(1+x+x²)]
x→1
=lim [(1+x+x²-3)/(1-x)(1+x+x²)]
x→1
=lim (x²+x-2)/[(1-x)(1+x+x²)]
x→1
=lim (x-1)(x+2)/[(1-x)(1+x+x²)]
x→1
=lim -(x+2)/(1+x+x²)
x→1
=-(1+2)/(1+1+1²)
=-3/3
=-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询