³√8=2,因为2*2*2=8,³√8=³√2*2*2=2
此外还有几种更普遍适用的开立方的方法。
设A为被开立方的数,有恒等式(X^3+A)/(2*X^2)=X
例如:
将8开立方:
(2^3+8)/(2*2^2)=2,再将2作为X代回,结果仍是2
故8开立方的准确值为:2设A=X^3,求X。这称为开立方。开立方有一个标准的公式:
X(n+1)=Xn+(A/X^2-Xn)1/3(n,n+1是下角标)
例如,A=5,即求5介于1的3次方、2的3次方之间(因为1的3次方=1,2的3次方=8)
初始值X0可以取1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,都可以。例如我们取X0=1.9按照公式:
第一步:X1=1.9+(5/1.9^2;-1.9)1/3=1.7。
即5/1.9×1.9=1.3850416,1.3850416-1.9=-0.5149584,-0.5149584×1/3=-0.1716528,1.9+(-0.1716528)=1.7。即取2位数值,即1.7。
第二步:X2=1.7+(5/1.7^2;-1.7)1/3=1.71。
即5/1.7×1.7=1.73010,1.73-1.7=0.03,0.03×1/3=0.01,1.7+0.01=1.71。取3位数,比前面多取一位数。
第三步:X3=1.71+(5/1.71^2;-1.71)1/3=1.709.
第四步:X4=1.709+(5/1.709^2;-1.709)1/3=1.7099
这种方法可以自动调节,第一步与第三步取值偏大,但是计算出来以后输出值会自动转小;第二步,第四步输入值
偏小,输出值自动转大。即5=1.7099^3;
当然初始值X0也可以取1.1,1.2,1.3,……,1.8,1.9中的任何一个,都是X1=1.7>。当然,我们在实际中初始值最好采用中间值,即1.5。1.5+(5/1.5²-1.5)1/3=1.7。