什么是测地线
2个回答
展开全部
测地线就是在一个三维物体的表面上找出两个点的最短距离。测地线的具体应用挺广的,比如说飞机船只的航道设计。
首先我们知道在二维平面上两点之间线段最短,但若是换到三维这就没办法实现了,因为你无法穿透这个物体以寻求最短距离。所以,我们就得想办法在曲面上面寻求最短距离。因为曲面略微抽象而且路径很多让人感觉无从下手,所以看似很难找。
其实不然,想象一张纸(假设它的厚度是忽略不计的),你既可以平铺让它处于绝对二维状态,又可以将其折叠成不同形状使其处于三维状态。如果这样想,事情就变简单了。假设你的那张不计厚度的纸处于平面二维状态,纸上有两个位置不同的点,你可以很容易找到两点之间最短距离。然后,你再将纸折叠成不同形状,尽管此时面不同了,但是两点的最短距离依然还是原先那条线:因为面不管被如何折面积都是不变的。
所以要找到测地线的关键就是把曲面转化成平面的这一步。微积分里面的术语叫parametrization(参数化),先不做过多讲解。当把曲面参数化成二维面之后,我们可以通过微积分求导。因为你要得到的是条直线,所以把未知方程的导数再列一个方程。令此方程为零,此时你可以求得几个不同变量的值。最后你得把二维重新转回三维,这步也略微复杂,不做过多解释。把求得的空间方程输入mathematica等数学软件,这样神奇的测地线就找到了。
首先我们知道在二维平面上两点之间线段最短,但若是换到三维这就没办法实现了,因为你无法穿透这个物体以寻求最短距离。所以,我们就得想办法在曲面上面寻求最短距离。因为曲面略微抽象而且路径很多让人感觉无从下手,所以看似很难找。
其实不然,想象一张纸(假设它的厚度是忽略不计的),你既可以平铺让它处于绝对二维状态,又可以将其折叠成不同形状使其处于三维状态。如果这样想,事情就变简单了。假设你的那张不计厚度的纸处于平面二维状态,纸上有两个位置不同的点,你可以很容易找到两点之间最短距离。然后,你再将纸折叠成不同形状,尽管此时面不同了,但是两点的最短距离依然还是原先那条线:因为面不管被如何折面积都是不变的。
所以要找到测地线的关键就是把曲面转化成平面的这一步。微积分里面的术语叫parametrization(参数化),先不做过多讲解。当把曲面参数化成二维面之后,我们可以通过微积分求导。因为你要得到的是条直线,所以把未知方程的导数再列一个方程。令此方程为零,此时你可以求得几个不同变量的值。最后你得把二维重新转回三维,这步也略微复杂,不做过多解释。把求得的空间方程输入mathematica等数学软件,这样神奇的测地线就找到了。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询