空间自相关的计算方法

 我来答
帅6子797
2016-05-28 · 超过51用户采纳过TA的回答
知道答主
回答量:189
采纳率:0%
帮助的人:52.6万
展开全部

有许多种,然最为知名也最为常用的有:Moran’s I、Geary’s C、Getis、Join count等等。但这些方法各有其功用,同时亦有其适用范畴与限制,当然自有其优缺点。一般来说,方法在功用上可大致分为两大类:一为全域型(Global Spatial Autocorrelation),另一则为区域型(Local Spatial Autocorrelation)两种。
全域型的功能在於描述某现象的整体分布状况,判断此现象在空间是否有聚集特性存在,但其并不能确切地指出聚集在哪些地区。且若将全域型不同的空间间隔(spatial lag)的空间自相关统计量依序排列,还可进一步作空间自相关系数图(spatial autocorrelation coefficient correlogram),分析该现象在空间上是否有阶层性分布。而依据Anselin(1995)提出LISA(Local Indicators of Spatial Association)方法论说法,区域型之所以能够推算出聚集地(spatial hot spot)的范围,主要有两种:一是藉由统计显著性检定的方法,检定聚集空间单元相对於整体研究范围而言,其空间自相关是否够显著,若显著性大,即是该现象空间聚集的地区,如:Getis和Ord(1992)发展的Getis统计方法;另外,则是度量空间单元对整个研究范围空间自相关的影响程度,影响程度大的往往是区域内的「特例」(outliers),也就表示这些「特例」点往往是空间现象的聚集点,例如:Anselin’s Moran Scatterplot。

上海华然企业咨询
2024-10-28 广告
**算法安全自评估报告**本报告旨在对我司所使用的核心算法进行安全自评估。通过内部审查,确认算法设计遵循行业实践,加密措施得当,数据输入处理严格验证,以防范注入攻击。同时,定期进行算法审计与漏洞扫描,确保无已知安全漏洞。针对潜在风险,已制定... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式