如何看MATLAB运行神经网络的结果

NEWRB,neurons=0,SSE=2.70012net1=NeuralNetworkobject:architecture:numInputs:1numLayers... NEWRB, neurons = 0, SSE = 2.70012

net1 =

Neural Network object:

architecture:

numInputs: 1
numLayers: 2
biasConnect: [1; 1]
inputConnect: [1; 0]
layerConnect: [0 0; 1 0]
outputConnect: [0 1]
targetConnect: [0 0]

numOutputs: 1 (read-only)
numTargets: 0 (read-only)
numInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: {1x1 cell} of inputs
layers: {2x1 cell} of layers
outputs: {1x2 cell} containing 1 output
targets: {1x2 cell} containing no targets
biases: {2x1 cell} containing 2 biases
inputWeights: {2x1 cell} containing 1 input weight
layerWeights: {2x2 cell} containing 1 layer weight

functions:

adaptFcn: (none)
initFcn: (none)
performFcn: 'mse'
trainFcn: (none)

parameters:

adaptParam: (none)
initParam: (none)
performParam: (none)
trainParam: (none)

weight and bias values:

IW: {2x1 cell} containing 1 input weight matrix
LW: {2x2 cell} containing 1 layer weight matrix
b: {2x1 cell} containing 2 bias vectors

other:

userdata: (user stuff)
y1 =

26.7693

delta1 =

0.1839
展开
 我来答
匿名用户
2017-09-14
展开全部
如何看MATLAB运行神经网络的结果
从图中Neural Network可以看出,你的网络结构是两个隐含层,2-3-1-1结构的网络,算法是traindm,显示出来的误差变化为均方误差值mse。经过482次迭代循环完成训练,耗时5秒。相同计算精度的话,训练次数越少,耗时越短,网络结构越优秀。达到设定的网络精度0.001的时候,误差下降梯度为0.0046,远大于默认的1e-5,说明此时的网络误差仍在快速下降,所以可以把训练精度目标再提高一些,比如设为0.0001或者1e-5。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式