3个回答
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
展开全部
第一步和前面回答的朋友一样,获取目标区域,然后用get_region_points得到区域内每个点的行列坐标数组,然后遍历这个数组,得到每个坐标像素的灰度值
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
网上搜索图像边缘提取,有很多详细的讲解,就是讲的都太深奥,很难看明白。图像边缘提取原理并不复杂,至于一些大牛提供的复杂变换公式,也没必要深入的去研究,halcon都已经在算子中将其封装好了,我们会用就行。
边缘的定义:边缘是图像中灰度发生明显变化的地方,是不同灰度区域之间的界限。
图像的每个像素点的灰度值用矩阵来表示,那么画竖线的位置就是边缘界限。
那么如何进行图像边缘的提取呢?采用掩模的方式,在图像矩阵上进行移动,然后利用掩模内的掩模值进行计算,进而实现边缘的求取。
举例:假如使用3*3的掩模来求取:
-1 0 1
-1 0 1
-1 0 1
掩模矩阵和红色圈出来的Value1计算:{(-1)*1+0*1+1*1}+{(-1)*1+0*1+1*1}+{(-1)*1+0*1+1*1}=0
掩模矩阵和蓝色圈出来的Value2计算:{(-1)*1+0*1+1*10}+{(-1)*1+0*1+1*10}+{(-1)*1+0*1+1*10}=27
我们可以设置一个边界值Value,则程序中可设置判断,当|Value2-Value1|>Value时就认为当前是图像边缘。
边缘的定义:边缘是图像中灰度发生明显变化的地方,是不同灰度区域之间的界限。
图像的每个像素点的灰度值用矩阵来表示,那么画竖线的位置就是边缘界限。
那么如何进行图像边缘的提取呢?采用掩模的方式,在图像矩阵上进行移动,然后利用掩模内的掩模值进行计算,进而实现边缘的求取。
举例:假如使用3*3的掩模来求取:
-1 0 1
-1 0 1
-1 0 1
掩模矩阵和红色圈出来的Value1计算:{(-1)*1+0*1+1*1}+{(-1)*1+0*1+1*1}+{(-1)*1+0*1+1*1}=0
掩模矩阵和蓝色圈出来的Value2计算:{(-1)*1+0*1+1*10}+{(-1)*1+0*1+1*10}+{(-1)*1+0*1+1*10}=27
我们可以设置一个边界值Value,则程序中可设置判断,当|Value2-Value1|>Value时就认为当前是图像边缘。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |