二重积分计算题,不明白最后一步是如何得出的,求推导过程。

 我来答
第10号当铺
2017-07-06 · TA获得超过1.1万个赞
知道大有可为答主
回答量:1.1万
采纳率:71%
帮助的人:4252万
展开全部
设积分域为 x ∈(-∞,+∞)
令:F = (-∞,+∞)∫e^(-x²)dx
同样 F= (-∞,+∞)∫e^(-y²)dy
由于x,y是互不相关的的积分变量,因此:
F² = (-∞,+∞)∫e^(-x²)dx * (-∞,+∞)∫e^(-y²)dy
= [D]∫∫e^(-x²)*dx * e^(-y²)*dy
= [D]∫∫e^[-(x²+y²)]*dx *dy
式中积分域D = {(x,y)|x ∈(-∞,+∞),y∈(-∞,+∞)}
对x,y进行极坐标变换,则:
x²+y² = ρ²;dxdy = ρ*dρ*dθ
F² = [D]∫∫e^[-(x²+y²)]*dx *dy
= [0,+∞)[0,2π]∫∫e^(-ρ²) ρ*dρ*dθ
= [0,2π]∫dθ *(0,+∞)∫e^(-ρ²) ρ*dρ
= 2π* 1/2*[0,+∞)*∫e^(-ρ²) *dρ²
= π
因此 F = (-∞,+∞)∫e^(-x²)dx = √π
一半就是你要的那个
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式