用定积分定义计算e^x在[0,1]的定积分

 我来答
Dilraba学长
高粉答主

2019-05-09 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411059

向TA提问 私信TA
展开全部

答案为e-1

解题过程如下:

( λ->0)lim∑e^(ξi)(△xi)

=(n->∞)lim∑e^(i/n)(1/n)【其中ξi=i/n,△xi=1/n,i=1,2,...,n】

=(n->∞)lim(1/n){e^(1/n)[1-(e^(1/n))^n]/[1-e^(1/n)]}

=(n->∞)lime^(1/n)[1-e]/{n[1-e^(1/n)]}

=(n->∞)lim[1-e]/{n[1-e^(1/n)]}

=e-1

扩展资料

定理

一般定理

定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

常用积分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

帐号已注销
2019-03-09 · TA获得超过82.9万个赞
知道大有可为答主
回答量:2602
采纳率:100%
帮助的人:176万
展开全部

e-1。

解答过程如下:

( λ->0)lim∑e^(ξi)(△xi)

=(n->∞)lim∑e^(i/n)(1/n)【其中ξi=i/n,△xi=1/n,i=1,2,...,n】

=(n->∞)lim(1/n){e^(1/n)[1-(e^(1/n))^n]/[1-e^(1/n)]}

=(n->∞)lime^(1/n)[1-e]/{n[1-e^(1/n)]}

=(n->∞)lim[1-e]/{n[1-e^(1/n)]}

=e-1

其中:(n->∞)lime^(1/n)=1,(n->∞)limn[1-e^(1/n)]=(x->0+)lim[1-e^x]/x=(x->0+)lim(-x/x)=-1 ,在求∑e^(i/n)时用到了等比数列求和公式。

扩展资料:

牛顿-莱布尼茨公式

定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是:

如果f(x)是[a,b]上的连续函数,并且有F′(x)=f(x),那么

用文字表述为:一个定积分式的值,就是原函数在上限的值与原函数在下限的值的差。

常用积分公式:

1)∫0dx=c 

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2017-12-08
展开全部
( λ->0)lim∑e^(ξi)(△xi)
=(n->∞)lim∑e^(i/n)(1/n)【其中ξi=i/n,△xi=1/n,i=1,2,...,n】
=(n->∞)lim(1/n){e^(1/n)[1-(e^(1/n))^n]/[1-e^(1/n)]}
=(n->∞)lime^(1/n)[1-e]/{n[1-e^(1/n)]}
=(n->∞)lim[1-e]/{n[1-e^(1/n)]}
=e-1
其中:(n->∞)lime^(1/n)=1,(n->∞)limn[1-e^(1/n)]=(x->0+)lim[1-e^x]/x=(x->0+)lim(-x/x)=-1 ,在求∑e^(i/n)时用到了等比数列求和公式
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
522597089
2011-03-05 · TA获得超过6787个赞
知道大有可为答主
回答量:1170
采纳率:75%
帮助的人:817万
展开全部
( λ->0)lim∑e^(ξi)(△xi)
=(n->∞)lim∑e^(i/n)(1/n)【其中ξi=i/n,△xi=1/n,i=1,2,...,n】
=(n->∞)lim(1/n){e^(1/n)[1-(e^(1/n))^n]/[1-e^(1/n)]}
=(n->∞)lime^(1/n)[1-e]/{n[1-e^(1/n)]}
=(n->∞)lim[1-e]/{n[1-e^(1/n)]}
=e-1
其中:(n->∞)lime^(1/n)=1,(n->∞)limn[1-e^(1/n)]=(x->0+)lim[1-e^x]/x=(x->0+)lim(-x/x)=-1 ,在求∑e^(i/n)时用到了等比数列求和公式。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式