圆周率是怎样算出来的?
19个回答
展开全部
有奖励写回答
圆周率是怎样算出来的?
有奖励写回答共14个回答
假面
如果是你希望,就带上XX的假面
聊聊关注成为第12150位粉丝
圆周率是用圆的周长除以它的直径计算出来的。
“圆周率”即圆的周长与其直径之间的比率。关于它的计算问题,历来是中外数学家极感兴趣、孜孜以求的问题。德国的一位数学家曾经说过:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展的一个标志。”
我国古代在圆周率的计算方面长期领先于世界水平,这应当归功于魏晋时期数学家刘徽所创立的新方法——“割圆术”。
所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。这个方法,是刘徽在批判总结了数学史上各种旧的计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。
圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。
在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位
圆周率是怎样算出来的?
有奖励写回答共14个回答
假面
如果是你希望,就带上XX的假面
聊聊关注成为第12150位粉丝
圆周率是用圆的周长除以它的直径计算出来的。
“圆周率”即圆的周长与其直径之间的比率。关于它的计算问题,历来是中外数学家极感兴趣、孜孜以求的问题。德国的一位数学家曾经说过:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展的一个标志。”
我国古代在圆周率的计算方面长期领先于世界水平,这应当归功于魏晋时期数学家刘徽所创立的新方法——“割圆术”。
所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。这个方法,是刘徽在批判总结了数学史上各种旧的计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。
圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。
在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
“回家呵呵红红火火!11111111111111111111111111111111111111哈哈哈哈好好学习哈哈还哥哥说哥哥哥哥哥vvVB宝宝帮回家成功夏天H股赶场才赶场才刚刚唱歌好v个给v刚好Vv个vv给
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
圆的周长与直径的比是根据"化圆为方"的已知圆面积7平方,直接推出未知的直径3和周长6+2√3发现的。只有首先得到了圆的周长6+2√3和它所对应的直径3才能算出圆周率。并不是采用正6边形无限倍边去推出的(正6x2ⁿ边形)周长似乎等同于圆的周长,再用似乎等同于圆的周长除以直径去求所谓的圆周率。
其实所谓的圆周率π=3.1415......原本是正6x2ⁿ边形的周长与过中心点的对角线的比,应叫正6x2ⁿ边率。而圆周率明明指的是“圆的周长与直径的比”,圆的周长与直径的比是6+2√3比3。这是根据已知圆周长上的点和周长上重叠的点与直径上的点的数量发现的。
就像“方周率”。大家知道“方周率”吗?“方周率”就是正方形的周长c与正方形的对边距a的比是4比1、比值4就是(方周率)根据正方形存在四个重叠的点的数量确定的。而采用正方形的周长c与它外接圆的直径d来求“方周率”不是舍近求远了吗,再者也不成正整比例呀。
正6x2边率的值和圆周率的值不是同一个值。
其实所谓的圆周率π=3.1415......原本是正6x2ⁿ边形的周长与过中心点的对角线的比,应叫正6x2ⁿ边率。而圆周率明明指的是“圆的周长与直径的比”,圆的周长与直径的比是6+2√3比3。这是根据已知圆周长上的点和周长上重叠的点与直径上的点的数量发现的。
就像“方周率”。大家知道“方周率”吗?“方周率”就是正方形的周长c与正方形的对边距a的比是4比1、比值4就是(方周率)根据正方形存在四个重叠的点的数量确定的。而采用正方形的周长c与它外接圆的直径d来求“方周率”不是舍近求远了吗,再者也不成正整比例呀。
正6x2边率的值和圆周率的值不是同一个值。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。
圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。[1]
1965年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式[2]。
2019年3月14日,谷歌宣布圆周率现已到小数点后31.4万亿位。[3]
中文名
圆周率
外文名
Ratio of circumference to diameter;Pi
符号表示
π
近似值
22/7(约率)、355/113(密率)
圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。[1]
1965年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式[2]。
2019年3月14日,谷歌宣布圆周率现已到小数点后31.4万亿位。[3]
中文名
圆周率
外文名
Ratio of circumference to diameter;Pi
符号表示
π
近似值
22/7(约率)、355/113(密率)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询