
展开全部
先求驻点
zx'=cosx+cos(x+y)=0,zy'=cosy+cos(x+y)=0
两式联立,得x=y=π/3,即唯一驻点为(π/3,π/3)
令A=zxx''(π/3,π/3)=-√3,B=zxy''(π/3,π/3)=-√3/2
C=zyy''(π/3,π/3)=-√3,P=B^2-AC=-9/4
因为P<0,A<0,所以f(π/3,π/3)=(3√3)/2是极大值
zx'=cosx+cos(x+y)=0,zy'=cosy+cos(x+y)=0
两式联立,得x=y=π/3,即唯一驻点为(π/3,π/3)
令A=zxx''(π/3,π/3)=-√3,B=zxy''(π/3,π/3)=-√3/2
C=zyy''(π/3,π/3)=-√3,P=B^2-AC=-9/4
因为P<0,A<0,所以f(π/3,π/3)=(3√3)/2是极大值
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询