2个回答
2017-12-15 · 知道合伙人教育行家
关注
展开全部
∫(cosx)^2/(sinx)^3*dx
=∫cosx/(sinx)^3*d(sinx)
=-2∫cosxd[1/(sinx)^2]
=-2cosx/(sinx)^2+2∫1/(sinx)^2*d(cosx)
=-2cosx/(sinx)^2+2∫1/[1-(cosx)^2]*d(cosx)
=-2cosx/(sinx)^2+2*(1/2)ln|(1+cosx)/(1-cosx)|+C
=-2cosx/(sinx)^2+ln[(1+cosx)/(1-cosx)]+C
=∫cosx/(sinx)^3*d(sinx)
=-2∫cosxd[1/(sinx)^2]
=-2cosx/(sinx)^2+2∫1/(sinx)^2*d(cosx)
=-2cosx/(sinx)^2+2∫1/[1-(cosx)^2]*d(cosx)
=-2cosx/(sinx)^2+2*(1/2)ln|(1+cosx)/(1-cosx)|+C
=-2cosx/(sinx)^2+ln[(1+cosx)/(1-cosx)]+C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询