(y^2+x^2)=PI/6*(x+y)
x^2+2xy-y^2+(y^2+2xy-x^2) y'(x)=0
令y=u*x,则y'(x)=u(x)+x*u'(x);带入上式化简,有
x^2+2xy-y^2+(y^2+2xy-x^2)*(u+x*u')=0
(u^2+1)*(u+1)+(u^2+2u-1)*x*u'=0
dx/x=-(u^2+2u-1)/((u^2+1)*(u+1))*du
dx/x=(1/(u+1)-2u/(u^2+1))*du
ln x=ln(u+1)-ln(u^2+1)+_C1
x=_C1*(u+1)/(u^2+1)
(y^2+x^2)=_C1(x+y)
令x=0,y=PI/6,有_C1=PI/6
即有特解(y^2+x^2)=PI/6*(x+y)
释义
形如y''+py'+qy=0的方程称为“齐次线性方程”,这里“齐次”是指方程中每一项关于未知函数y及其导数y',y'',……的次数都是相等的,方程中没有自由项,“线性”则表示导数之间是线性运算(简单地说就是各阶导数之间的只能加减)。
比如方程y''+py'+qy=x就不是“齐次”的,因为方程右边的项x不含y及y的导数,是关于y,y',y'',……的0次项,因而就要称为“非齐次线性方程”,方程yy'=1也不是,因为它首先不是线性的。