2个回答
展开全部
原式=1/2∫ln(1+x)dx²
=1/2x²ln(1+x)-1/2∫x²dln(1+x)
=1/2x²ln(1+x)-1/2∫x²/(1+x) dx
=1/2x²ln(1+x)-1/2∫(x²-1+1)/(1+x) dx
=1/2x²ln(1+x)-1/2∫[(x²-1)/(x+1)+1/(1+x)] dx
=1/2x²ln(1+x)-1/2∫[(x-1)+1/(1+x)] dx
=1/2x²ln(1+x)-1/2[x²/2-x+ln(1+x)]+C
=1/2x²ln(1+x)-1/2∫x²dln(1+x)
=1/2x²ln(1+x)-1/2∫x²/(1+x) dx
=1/2x²ln(1+x)-1/2∫(x²-1+1)/(1+x) dx
=1/2x²ln(1+x)-1/2∫[(x²-1)/(x+1)+1/(1+x)] dx
=1/2x²ln(1+x)-1/2∫[(x-1)+1/(1+x)] dx
=1/2x²ln(1+x)-1/2[x²/2-x+ln(1+x)]+C
追答
原式=∫e^x/(e^2x+1) dx
=∫de^x/(e^2x+1)
=arctan(e^x)+C
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询