两条直线垂直,斜率有什么关系?
如果两条直线的斜率都存在。则,它们的斜率之积=-1。
如果其中一条直线的斜率不存在。则,另一条直线的斜率=0。
如果直线与x轴垂直,直角的正切值无穷大,故此直线不存在斜率。 当直线L的斜率存在时,对于一次函数y=kx+b(斜截式),k即该函数图像(直线)的斜率。
扩展资料:
当直线L的斜率不存在时,斜截式y=kx+b 当k=0时 y=b
当直线L的斜率存在时,点斜式y2—y1=k(X2—X1),
当直线L在两坐标轴上存在非零截距时,有截距式X/a+y/b=1
对于任意函数上任意一点,其斜率等于其切线与x轴正方向的夹角,即tanα
斜率计算:ax+by+c=0中,k=-a/b.
直线斜率公式:k=(y2-y1)/(x2-x1)
两条垂直相交直线的斜率相乘积为-1:k1*k2=-1.
当k>0时,直线与x轴夹角越大,斜率越大;当k<0时,直线与x轴夹角越大,斜率越小。
曲线的上某点的斜率则反映了此曲线的变量在此点处的变化的快慢程度。
曲线的变化趋势仍可以用过曲线上一点的切线的斜率即导数来描述。导数的几何意义是该函数曲线在这一点上的切线斜率。
f'(x)>0时,函数在该区间内单调递增,曲线呈向上的趋势;f'(x)<0时,函数在该区间内单调减,曲线呈向下的趋势。
在(a,b)f''(x)<0时,函数在该区间内的图形是凸(从上向下看)的;f''(x)>0时,函数在该区间内的图形是凹的。
参考资料:百度百科---直线的斜率
垂直,是指一条线与另一条线成直角,这两条直线互相垂直。通常用符号“⊥”表示。
垂直的性质:
①在同一平面内,过一点有且只有一条直线与已知直线垂直。垂直一定会出现90°。
② 连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
③点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
线面垂直:如果一条直线与一个平面内的任意一条直线都垂直,就说这条直线与此平面互相垂直。
线面垂直的性质:
①如果一条直线垂直于一个平面,那么该直线垂直于平面内的所有直线。
②经过空间内一点,有且只有一条直线垂直已知平面。
③如果在两条平行直线中,有一条直线垂直于一个平面,那么另一条直线也垂直于这个平面。
④垂直于同一平面的两条直线平行。
如果其中一条直线的斜率不存在。则,另一条直线的斜率=0。
如果直线与x轴垂直,直角的正切值无穷大,故此直线不存在斜率。 当直线L的斜率存在时,对于一次函数y=kx+b(斜截式),k即该函数图像(直线)的斜率。
新课程高考数学模拟第二套第12题圆的切线求法两条直线垂直