3个回答
展开全部
原式 = lim<n→∞>[(n+1-2)/(n+1)]^n = lim<n→∞>[1-2/(n+1)]^n
= lim<n→∞>{[1-2/(n+1)]^[-(n+1)/2]}^[-2n/(n+1)]
= e^[lim<n→∞>-2n/(n+1)] = e^[lim<n→∞>-2/(1+1/n)] = e^(-2) = 1/e^2
= lim<n→∞>{[1-2/(n+1)]^[-(n+1)/2]}^[-2n/(n+1)]
= e^[lim<n→∞>-2n/(n+1)] = e^[lim<n→∞>-2/(1+1/n)] = e^(-2) = 1/e^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |