5个回答
展开全部
..................(4).计算:
(2). 在第一象限内,求曲线y=-x²+1上一点,使过该点的切线与曲线和两坐标轴所围的面积
最小;
y=-x²+1;y'=-2x;故过曲线上一点(xo,yo)=xo,-xo²+1)的切线方程为:
y=-2xo(x-xo)+yo=-2xox+2xo²+(-xo²+1)=-2xox+xo²+1;
令x=0,得切线与y轴的交点坐标(0,xo²+1);令y=0得切线与x轴的交点的坐标(xo²+1)/2x0;
曲线与y轴的交点的坐标为(0,1); 曲线与x轴的交点的坐标为(1,0);
故所围面积S=切线与两坐标轴所围三角形的面积S₁-曲线与两坐标所围面积S₂;
其中S₁=(xo²+1)²/4xo;
故所围面积(红色区域)S=(xo²+1)²/4xo-2/3;
现在求其最小值:令dS/dxo=[xo•2(xo²+1)•2xo-(xo²+1)]/4xo²=(4xo²-1)(xo²+1)/4xo²=0
得极小点xo=1/2;故此面积的最小值=(1/4+1)²/2-2/3=25/32-(2/3)=11/96;
2019-12-21 · 知道合伙人教育行家
关注
展开全部
(3)
A(x0,y0) 在 y=-x^2+1 上
A(x0,y0) = ( x0, -(x0)^2 +1)
y'=-2x
y'(x0)=-2x0
切线方程 A
y+(x0)^2 -1 = -2x0. ( x- x0)
x轴 : y=0
y+(x0)^2 -1 = -2x0. ( x- x0)
0+(x0)^2 -1 = -2x0. ( x- x0)
2x0.x = (x0)^2 +1
x = [(x0)^2 +1]/(2x0)
B= ([(x0)^2 +1]/(2x0) , 0)
y轴 : x=0
y+(x0)^2 -1 = -2x0. ( x- x0)
y+(x0)^2 -1 = 2(x0)^2
y=(x0)^2 +1
C= (0, (x0)^2 +1)
三角形的面积 S
=(1/2) {[(x0)^2 +1]/(2x0) } .[ (x0)^2 +1 ]
=(x0)^2 +1]^2/(4x0)
S =(1/4)[ (x0)^3 +2x0 + 1/x0]
S' =(1/4) [3(x0)^2 +2 - 1/(x0)^2]
S'=0
3(x0)^4 +2(x0)^2 - 1 =0
[3(x0)^2 - 1][ (x0)^2 +1] =0
x0 = √3/3
ie
min S at S0= √3/3
min S = (1/4) √3.[1/3 +1]^2 = 4√3/9
(4)
let
1/[x(x^2+1)]≡A/x +(Bx+C)/(x^2+1)
=>
1≡A(x^2+1) +(Bx+C)x
x=0, => A=1
coef. of x^2
A+B=0
B=-1
coef. of x, => C=0
1/[x(x^2+1)]
≡A/x +(Bx+C)/(x^2+1)
≡1/x -x/(x^2+1)
∫(1->+∞) dx/[x(x^2+1)]
=∫(1->+∞) [1/x -x/(x^2+1)] dx
=ln| x/√(x^2+1)| |(1->+∞)
=-ln( 1/√2)
=(1/2)ln2
A(x0,y0) 在 y=-x^2+1 上
A(x0,y0) = ( x0, -(x0)^2 +1)
y'=-2x
y'(x0)=-2x0
切线方程 A
y+(x0)^2 -1 = -2x0. ( x- x0)
x轴 : y=0
y+(x0)^2 -1 = -2x0. ( x- x0)
0+(x0)^2 -1 = -2x0. ( x- x0)
2x0.x = (x0)^2 +1
x = [(x0)^2 +1]/(2x0)
B= ([(x0)^2 +1]/(2x0) , 0)
y轴 : x=0
y+(x0)^2 -1 = -2x0. ( x- x0)
y+(x0)^2 -1 = 2(x0)^2
y=(x0)^2 +1
C= (0, (x0)^2 +1)
三角形的面积 S
=(1/2) {[(x0)^2 +1]/(2x0) } .[ (x0)^2 +1 ]
=(x0)^2 +1]^2/(4x0)
S =(1/4)[ (x0)^3 +2x0 + 1/x0]
S' =(1/4) [3(x0)^2 +2 - 1/(x0)^2]
S'=0
3(x0)^4 +2(x0)^2 - 1 =0
[3(x0)^2 - 1][ (x0)^2 +1] =0
x0 = √3/3
ie
min S at S0= √3/3
min S = (1/4) √3.[1/3 +1]^2 = 4√3/9
(4)
let
1/[x(x^2+1)]≡A/x +(Bx+C)/(x^2+1)
=>
1≡A(x^2+1) +(Bx+C)x
x=0, => A=1
coef. of x^2
A+B=0
B=-1
coef. of x, => C=0
1/[x(x^2+1)]
≡A/x +(Bx+C)/(x^2+1)
≡1/x -x/(x^2+1)
∫(1->+∞) dx/[x(x^2+1)]
=∫(1->+∞) [1/x -x/(x^2+1)] dx
=ln| x/√(x^2+1)| |(1->+∞)
=-ln( 1/√2)
=(1/2)ln2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询