2个回答
展开全部
let
f(x)=x.√(1-x^2)^3
f(-x) =-f(x)
=>∫(-1->1) x.√(1-x^2)^3 dx =0
let
x=sinu
dx=cosu du
x=0, u=0
x=1, u=π/2
∫(-1->1) (8-x)√(1-x^2)^3 dx
=∫(-1->1) 8.√(1-x^2)^3 dx
=16∫(0->1) √(1-x^2)^3 dx
=16∫(0->π/2) (cosu)^4 du
=4∫(0->π/2) (1+cos2u)^2 du
=4∫(0->π/2) [1+2cos2u+(cos2u)^2] du
=2∫(0->π/2) [3+4cos2u+cos4u ] du
=2[3u+2sin2u+(1/4)sin4u]|(0->π/2)
=3π
展开全部
5. I = 8∫<-1, 1>(1-x^2)^(3/2)dx - ∫<-1, 1>x(1-x^2)^(3/2)dx
= 16∫<0, 1>(1-x^2)^(3/2)dx - 0 , 令 x = sint
= 16∫<0, π/2>(cost)^4dt = 4∫<0, π/2>(1+cos2t)^2dt
= 4∫<0, π/2>[1+2cos2t+(cos2t)^2]dt
= 2∫<0, π/2>[3+4cos2t+cos4t]dt
= 2[3t + 2sin2t + (1/4)sin4t]<0, π/2>
= 3π
= 16∫<0, 1>(1-x^2)^(3/2)dx - 0 , 令 x = sint
= 16∫<0, π/2>(cost)^4dt = 4∫<0, π/2>(1+cos2t)^2dt
= 4∫<0, π/2>[1+2cos2t+(cos2t)^2]dt
= 2∫<0, π/2>[3+4cos2t+cos4t]dt
= 2[3t + 2sin2t + (1/4)sin4t]<0, π/2>
= 3π
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询