展开全部
lim{x->1} [x^2+mx+n]/[sin(x^2-1)] = 3
因为分母趋于零,极限值是常数,意味着分子必须和分母同阶无穷小,所以有 m+n+1 = 0
lim{x->1} [x^2+mx+n]/[sin(x^2-1)]
= lim{x->1} [x^2+mx+n]/[(x^2-1)] (等价无穷小代换)
= lim{x->1} [x^2+mx+n]/[(x+1)(x-1)]
= lim{x->1} 1/(x+1) * lim{x->1} [x^2+mx+n]/(x-1)
= (1/2) lim{x->1} [x^2+mx+n]/(x-1)
= (1/2) lim{x->1} [2x+m]
= (1/2)(2+m)
从 (1/2)(2+m) = 3,解得:m = 4
再从m+n+1 = 0可得:n = -5
因为分母趋于零,极限值是常数,意味着分子必须和分母同阶无穷小,所以有 m+n+1 = 0
lim{x->1} [x^2+mx+n]/[sin(x^2-1)]
= lim{x->1} [x^2+mx+n]/[(x^2-1)] (等价无穷小代换)
= lim{x->1} [x^2+mx+n]/[(x+1)(x-1)]
= lim{x->1} 1/(x+1) * lim{x->1} [x^2+mx+n]/(x-1)
= (1/2) lim{x->1} [x^2+mx+n]/(x-1)
= (1/2) lim{x->1} [2x+m]
= (1/2)(2+m)
从 (1/2)(2+m) = 3,解得:m = 4
再从m+n+1 = 0可得:n = -5
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询