6个回答
展开全部
被积函数化为 1/[x(x+1)(x^2+1)] = a/x + b/(x+1) + (cx+d)/(x^2+1)
通分,分子为 a(x+1)(x^2+1)+bx(x^2+1)+x(x+1)(cx+d)
则 a+b+c = 0, a+c+d = 0, a+b+d = 0, a = 1,
解得 a = 1, b = c = d = -1/2
I = (1/2)∫[2/x-1/(x+1)-(x+1)/(x^2+1)]dx
= (1/2)[ln|x|-ln|x+1|-(1/2)ln(x^2+1)-arctanx] + C
= (1/2)ln|x/[(x+1)√(x^2+1)]| - (1/2)arctanx + C
通分,分子为 a(x+1)(x^2+1)+bx(x^2+1)+x(x+1)(cx+d)
则 a+b+c = 0, a+c+d = 0, a+b+d = 0, a = 1,
解得 a = 1, b = c = d = -1/2
I = (1/2)∫[2/x-1/(x+1)-(x+1)/(x^2+1)]dx
= (1/2)[ln|x|-ln|x+1|-(1/2)ln(x^2+1)-arctanx] + C
= (1/2)ln|x/[(x+1)√(x^2+1)]| - (1/2)arctanx + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
变形为,A/x+(BX+C)/(x^2+1)+D/(x+1)
你的式子是错误的
你的式子是错误的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询