展开全部
f(x)=x^3-3x+k , 只有一个零点 x=a
f(a) =0
k= -a^3+ 3a
f(x)
=x^3-3x+k
=x^3-3x -a^3+3a
=(x-a)(x^2 + cx +(a^2-3) )
coef. of x
a^2-3 -ac=-3
a^2-ac=0
c= a
ie
f(x) =(x-a)[x^2 + ax +(a^2-3) ]
f(x)=x^3-3x+k , 只有一个零点 x=a
=>
△ of [x^2 + ax +(a^2-3) ] <0
a^2 -4(a^2-3) <0
-3a^2 +12<0
a^2-4 >0
a<-2 or a>2
k= -a^3+ 3a
k' = -3a^2 +3
k'=0
-3a^2 +3=0
a=1 or -1
k''= -6a
k''(1) <0 ( max)
k''(-1) >0 (min)
k= -a^3+ 3a
k(-2) = 8-6 =2
k(2) = -8 +6 =-2
ie
k<-2 or k>2
f(a) =0
k= -a^3+ 3a
f(x)
=x^3-3x+k
=x^3-3x -a^3+3a
=(x-a)(x^2 + cx +(a^2-3) )
coef. of x
a^2-3 -ac=-3
a^2-ac=0
c= a
ie
f(x) =(x-a)[x^2 + ax +(a^2-3) ]
f(x)=x^3-3x+k , 只有一个零点 x=a
=>
△ of [x^2 + ax +(a^2-3) ] <0
a^2 -4(a^2-3) <0
-3a^2 +12<0
a^2-4 >0
a<-2 or a>2
k= -a^3+ 3a
k' = -3a^2 +3
k'=0
-3a^2 +3=0
a=1 or -1
k''= -6a
k''(1) <0 ( max)
k''(-1) >0 (min)
k= -a^3+ 3a
k(-2) = 8-6 =2
k(2) = -8 +6 =-2
ie
k<-2 or k>2
追问
能带图说明么
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询