求积分问题
arctanx的导数是1/(1+x²)arccotx的导数是-1/(1+x²)这都没错。那么,∫1/(1+x²)dx=arctanx+C没错...
arctanx的导数是1/(1+x²)
arccotx的导数是-1/(1+x²)这都没错。
那么,∫1/(1+x²)dx=arctanx+C没错。
而∫-1/(1+x²)dx的结果是arccotx+C还是 -∫1/(1+x²)dx即-arctanx+C呢 展开
arccotx的导数是-1/(1+x²)这都没错。
那么,∫1/(1+x²)dx=arctanx+C没错。
而∫-1/(1+x²)dx的结果是arccotx+C还是 -∫1/(1+x²)dx即-arctanx+C呢 展开
3个回答
展开全部
第一个式为:arccotx+c1
第二式为 :-arctanx+c2
两者是相当的,在不同的情况下,取的常数不同而已。
第二式为 :-arctanx+c2
两者是相当的,在不同的情况下,取的常数不同而已。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这些都没错,
同一个函数积分,
因采用的方法不同,
或套用不同公式,
最后得出函数的样式,
很可能不一样,
由于c是一个可变常数,
本质其实是一样的,
所以答案样式不同,
但是正确的。
同一个函数积分,
因采用的方法不同,
或套用不同公式,
最后得出函数的样式,
很可能不一样,
由于c是一个可变常数,
本质其实是一样的,
所以答案样式不同,
但是正确的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询