谁能帮我看一下这道数学题
如右图,在△ABC中,AD是BC边上的中线,点N在AB边上,并且角MDN=90度,如果BM^2+CN^2=DM^2+DN^2,求证:AD^2=1/4(AB^2+AC^2)...
如右图,在△ABC中,AD是BC边上的中线,点N在AB边上,并且角MDN=90度,如果BM^2+CN^2=DM^2+DN^2,求证:AD^2=1/4(AB^2+AC^2).
展开
2个回答
展开全部
你好,很高兴地解答你的问题。
延长ND到E使得DE=DN,
根据D是BC的中点,DE=DN,可证△BED全等于△CND(SAS)
得∠DBE=∠C,BE=CN.
因为∠MDN=90°
所以∠MDE=90°
所以DM^2+DN^2=DM^2+DE^2=ME^2
因为BM^2+CN^2=DM^2+DN^2
所以BM^2+BE^2=BM^2+CN^2=DM^2+DN^2=DM^2+DE^2=ME^2
即BM^2+BE^2=ME^2
所以∠MBE=90°
所以∠MBD+∠DBE=90°
所以∠MBD+∠C=90°
因为∠BAC+∠MBD+∠C=90°
所以∠BAC=90°
所以 AB^2+AC^2=BC^2,BC=2AD(在直角三角形中,斜边上的中线等于斜边的一半)
所以AB^2+AC^2=(2AD)^2=4AD^2
即AD^2=1/4(AB^2+AC^2)
延长ND到E使得DE=DN,
根据D是BC的中点,DE=DN,可证△BED全等于△CND(SAS)
得∠DBE=∠C,BE=CN.
因为∠MDN=90°
所以∠MDE=90°
所以DM^2+DN^2=DM^2+DE^2=ME^2
因为BM^2+CN^2=DM^2+DN^2
所以BM^2+BE^2=BM^2+CN^2=DM^2+DN^2=DM^2+DE^2=ME^2
即BM^2+BE^2=ME^2
所以∠MBE=90°
所以∠MBD+∠DBE=90°
所以∠MBD+∠C=90°
因为∠BAC+∠MBD+∠C=90°
所以∠BAC=90°
所以 AB^2+AC^2=BC^2,BC=2AD(在直角三角形中,斜边上的中线等于斜边的一半)
所以AB^2+AC^2=(2AD)^2=4AD^2
即AD^2=1/4(AB^2+AC^2)
追答
采纳最佳答案
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询