x趋于无穷,(x+e^x)^1/x的极限如何计算
3个回答
展开全部
(1-1/x)^x
=[(x-1)/x]^x
=[x/(x-1)]^(-x)
=[1+1/(x-1)]^(-x)
=1/[1+1/(x-1)]^(x)
=1/[1+1/(x-1)]^(x-1)*[1+1/(x-1)]
当x趋于正无穷时,
1/[1+1/(x-1)]^(x-1)*[1+1/(x-1)]
=1/[1+1/(x-1)]^(x-1)
=1/e
=[(x-1)/x]^x
=[x/(x-1)]^(-x)
=[1+1/(x-1)]^(-x)
=1/[1+1/(x-1)]^(x)
=1/[1+1/(x-1)]^(x-1)*[1+1/(x-1)]
当x趋于正无穷时,
1/[1+1/(x-1)]^(x-1)*[1+1/(x-1)]
=1/[1+1/(x-1)]^(x-1)
=1/e
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-01-09
展开全部
当x趋于正无穷时,
1/[1+1/(x-1)]^(x-1)*[1+1/(x-1)]
=1/[1+1/(x-1)]^(x-1)
=1/e
1/[1+1/(x-1)]^(x-1)*[1+1/(x-1)]
=1/[1+1/(x-1)]^(x-1)
=1/e
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询