高数,曲线积分,请问这个解析这个地方什么意思?

 我来答
帐号已注销
2019-10-23 · TA获得超过5323个赞
知道大有可为答主
回答量:4533
采纳率:90%
帮助的人:334万
展开全部

积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。

积分的一个严格的数学定义由波恩哈德·黎曼给出(参见条目“黎曼积分”)。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。从十九世纪起,更高级的积分定义逐渐出现,有了对各种积分域上的各种类型的函数的积分。比如说,路径积分是多元函数的积分,积分的区间不再是一条线段(区间[a,b]),而是一条平面上或空间中的曲线段;在面积积分中,曲线被三维空间中的一个曲面代替。对微分形式的积分是微分几何中的基本概念。

积分发展的动力源自实际应用中的需求。实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。要求简单几何形体的面积或体积,可以套用已知的公式。比如一个长方体状的游泳池的容积可以用长×宽×高求出。但如果游泳池是卵形、抛物型或更加不规则的形状,就需要用积分来求出容积。物理学中,常常需要知道一个物理量(比如位移)对另一个物理量(比如力)的累积效果,这时也需要用到积分。

如果一个函数的积分存在,并且有限,就说这个函数是可积的。一般来说,被积函数不一定只有一个变量,积分域也可以是不同维度的空间,甚至是没有直观几何意义的抽象空间。如同上面介绍的,对于只有一个变量x的实值函数f,f在闭区间[a,b]上的积分记作

其中的

除了表示x是f中要进行积分的那个变量(积分变量)之外,还可以表示不同的含义。在黎曼积分中,

表示分割区间的标记;在勒贝格积分中,表示一个测度;或仅仅表示一个独立的量(微分形式)。一般的区间或者积分范围J,J上的积分可以记作

如果变量不只一个,比如说在二重积分中,函数

在区域D上的积分记作

或者

其中

与区域D对应,是相应积分域中的微分元。

通常意义

积分都满足一些基本的性质。以下的

在黎曼积分意义上表示一个区间,在勒贝格积分意义下表示一个可测集合。


希望我能帮助你解疑释惑。

百度网友439ec44
2019-12-29 · TA获得超过3153个赞
知道小有建树答主
回答量:446
采纳率:44%
帮助的人:54.1万
展开全部
(个人愚见,希望能对你有所帮助)一条曲线的某个点有内外外法线向量,同时也有两个方向的切线向量。这里是运用了法线向量和切线向量方向余弦的关系。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式